/*
 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Copyright (c) 2012, Stephen Colebourne & Michael Nascimento Santos
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 *  * Neither the name of JSR-310 nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package java.time.temporal;

import java.time.DateTimeException;

Strategy for adjusting a temporal object.

Adjusters are a key tool for modifying temporal objects. They exist to externalize the process of adjustment, permitting different approaches, as per the strategy design pattern. Examples might be an adjuster that sets the date avoiding weekends, or one that sets the date to the last day of the month.

There are two equivalent ways of using a TemporalAdjuster. The first is to invoke the method on this interface directly. The second is to use Temporal.with(TemporalAdjuster):

  // these two lines are equivalent, but the second approach is recommended
  temporal = thisAdjuster.adjustInto(temporal);
  temporal = temporal.with(thisAdjuster);
It is recommended to use the second approach, with(TemporalAdjuster), as it is a lot clearer to read in code.

The TemporalAdjusters class contains a standard set of adjusters, available as static methods. These include:

  • finding the first or last day of the month
  • finding the first day of next month
  • finding the first or last day of the year
  • finding the first day of next year
  • finding the first or last day-of-week within a month, such as "first Wednesday in June"
  • finding the next or previous day-of-week, such as "next Thursday"
See Also:
Implementation Requirements: This interface places no restrictions on the mutability of implementations, however immutability is strongly recommended.
Since:1.8
/** * Strategy for adjusting a temporal object. * <p> * Adjusters are a key tool for modifying temporal objects. * They exist to externalize the process of adjustment, permitting different * approaches, as per the strategy design pattern. * Examples might be an adjuster that sets the date avoiding weekends, or one that * sets the date to the last day of the month. * <p> * There are two equivalent ways of using a {@code TemporalAdjuster}. * The first is to invoke the method on this interface directly. * The second is to use {@link Temporal#with(TemporalAdjuster)}: * <pre> * // these two lines are equivalent, but the second approach is recommended * temporal = thisAdjuster.adjustInto(temporal); * temporal = temporal.with(thisAdjuster); * </pre> * It is recommended to use the second approach, {@code with(TemporalAdjuster)}, * as it is a lot clearer to read in code. * <p> * The {@link TemporalAdjusters} class contains a standard set of adjusters, * available as static methods. * These include: * <ul> * <li>finding the first or last day of the month * <li>finding the first day of next month * <li>finding the first or last day of the year * <li>finding the first day of next year * <li>finding the first or last day-of-week within a month, such as "first Wednesday in June" * <li>finding the next or previous day-of-week, such as "next Thursday" * </ul> * * @implSpec * This interface places no restrictions on the mutability of implementations, * however immutability is strongly recommended. * * @see TemporalAdjusters * @since 1.8 */
@FunctionalInterface public interface TemporalAdjuster {
Adjusts the specified temporal object.

This adjusts the specified temporal object using the logic encapsulated in the implementing class. Examples might be an adjuster that sets the date avoiding weekends, or one that sets the date to the last day of the month.

There are two equivalent ways of using this method. The first is to invoke this method directly. The second is to use Temporal.with(TemporalAdjuster):

  // these two lines are equivalent, but the second approach is recommended
  temporal = thisAdjuster.adjustInto(temporal);
  temporal = temporal.with(thisAdjuster);
It is recommended to use the second approach, with(TemporalAdjuster), as it is a lot clearer to read in code.
Params:
  • temporal – the temporal object to adjust, not null
Throws:
Implementation Requirements: The implementation must take the input object and adjust it. The implementation defines the logic of the adjustment and is responsible for documenting that logic. It may use any method on Temporal to query the temporal object and perform the adjustment. The returned object must have the same observable type as the input object

The input object must not be altered. Instead, an adjusted copy of the original must be returned. This provides equivalent, safe behavior for immutable and mutable temporal objects.

The input temporal object may be in a calendar system other than ISO. Implementations may choose to document compatibility with other calendar systems, or reject non-ISO temporal objects by querying the chronology.

This method may be called from multiple threads in parallel. It must be thread-safe when invoked.

Returns:an object of the same observable type with the adjustment made, not null
/** * Adjusts the specified temporal object. * <p> * This adjusts the specified temporal object using the logic * encapsulated in the implementing class. * Examples might be an adjuster that sets the date avoiding weekends, or one that * sets the date to the last day of the month. * <p> * There are two equivalent ways of using this method. * The first is to invoke this method directly. * The second is to use {@link Temporal#with(TemporalAdjuster)}: * <pre> * // these two lines are equivalent, but the second approach is recommended * temporal = thisAdjuster.adjustInto(temporal); * temporal = temporal.with(thisAdjuster); * </pre> * It is recommended to use the second approach, {@code with(TemporalAdjuster)}, * as it is a lot clearer to read in code. * * @implSpec * The implementation must take the input object and adjust it. * The implementation defines the logic of the adjustment and is responsible for * documenting that logic. It may use any method on {@code Temporal} to * query the temporal object and perform the adjustment. * The returned object must have the same observable type as the input object * <p> * The input object must not be altered. * Instead, an adjusted copy of the original must be returned. * This provides equivalent, safe behavior for immutable and mutable temporal objects. * <p> * The input temporal object may be in a calendar system other than ISO. * Implementations may choose to document compatibility with other calendar systems, * or reject non-ISO temporal objects by {@link TemporalQueries#chronology() querying the chronology}. * <p> * This method may be called from multiple threads in parallel. * It must be thread-safe when invoked. * * @param temporal the temporal object to adjust, not null * @return an object of the same observable type with the adjustment made, not null * @throws DateTimeException if unable to make the adjustment * @throws ArithmeticException if numeric overflow occurs */
Temporal adjustInto(Temporal temporal); }