/*
* Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* (C) Copyright IBM Corp. 1999-2003 - All Rights Reserved
*
* The original version of this source code and documentation is
* copyrighted and owned by IBM. These materials are provided
* under terms of a License Agreement between IBM and Sun.
* This technology is protected by multiple US and International
* patents. This notice and attribution to IBM may not be removed.
*/
package java.text;
import sun.text.bidi.BidiBase;
This class implements the Unicode Bidirectional Algorithm.
A Bidi object provides information on the bidirectional reordering of the text
used to create it. This is required, for example, to properly display Arabic
or Hebrew text. These languages are inherently mixed directional, as they order
numbers from left-to-right while ordering most other text from right-to-left.
Once created, a Bidi object can be queried to see if the text it represents is
all left-to-right or all right-to-left. Such objects are very lightweight and
this text is relatively easy to process.
If there are multiple runs of text, information about the runs can be accessed
by indexing to get the start, limit, and level of a run. The level represents
both the direction and the 'nesting level' of a directional run. Odd levels
are right-to-left, while even levels are left-to-right. So for example level
0 represents left-to-right text, while level 1 represents right-to-left text, and
level 2 represents left-to-right text embedded in a right-to-left run.
Since: 1.4
/**
* This class implements the Unicode Bidirectional Algorithm.
* <p>
* A Bidi object provides information on the bidirectional reordering of the text
* used to create it. This is required, for example, to properly display Arabic
* or Hebrew text. These languages are inherently mixed directional, as they order
* numbers from left-to-right while ordering most other text from right-to-left.
* <p>
* Once created, a Bidi object can be queried to see if the text it represents is
* all left-to-right or all right-to-left. Such objects are very lightweight and
* this text is relatively easy to process.
* <p>
* If there are multiple runs of text, information about the runs can be accessed
* by indexing to get the start, limit, and level of a run. The level represents
* both the direction and the 'nesting level' of a directional run. Odd levels
* are right-to-left, while even levels are left-to-right. So for example level
* 0 represents left-to-right text, while level 1 represents right-to-left text, and
* level 2 represents left-to-right text embedded in a right-to-left run.
*
* @since 1.4
*/
public final class Bidi {
Constant indicating base direction is left-to-right. /** Constant indicating base direction is left-to-right. */
public static final int DIRECTION_LEFT_TO_RIGHT = 0;
Constant indicating base direction is right-to-left. /** Constant indicating base direction is right-to-left. */
public static final int DIRECTION_RIGHT_TO_LEFT = 1;
Constant indicating that the base direction depends on the first strong
directional character in the text according to the Unicode
Bidirectional Algorithm. If no strong directional character is present,
the base direction is left-to-right.
/**
* Constant indicating that the base direction depends on the first strong
* directional character in the text according to the Unicode
* Bidirectional Algorithm. If no strong directional character is present,
* the base direction is left-to-right.
*/
public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT = -2;
Constant indicating that the base direction depends on the first strong
directional character in the text according to the Unicode
Bidirectional Algorithm. If no strong directional character is present,
the base direction is right-to-left.
/**
* Constant indicating that the base direction depends on the first strong
* directional character in the text according to the Unicode
* Bidirectional Algorithm. If no strong directional character is present,
* the base direction is right-to-left.
*/
public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT = -1;
private BidiBase bidiBase;
Create Bidi from the given paragraph of text and base direction.
Params: - paragraph – a paragraph of text
- flags – a collection of flags that control the algorithm. The
algorithm understands the flags DIRECTION_LEFT_TO_RIGHT, DIRECTION_RIGHT_TO_LEFT,
DIRECTION_DEFAULT_LEFT_TO_RIGHT, and DIRECTION_DEFAULT_RIGHT_TO_LEFT.
Other values are reserved.
/**
* Create Bidi from the given paragraph of text and base direction.
* @param paragraph a paragraph of text
* @param flags a collection of flags that control the algorithm. The
* algorithm understands the flags DIRECTION_LEFT_TO_RIGHT, DIRECTION_RIGHT_TO_LEFT,
* DIRECTION_DEFAULT_LEFT_TO_RIGHT, and DIRECTION_DEFAULT_RIGHT_TO_LEFT.
* Other values are reserved.
*/
public Bidi(String paragraph, int flags) {
if (paragraph == null) {
throw new IllegalArgumentException("paragraph is null");
}
bidiBase = new BidiBase(paragraph.toCharArray(), 0, null, 0, paragraph.length(), flags);
}
Create Bidi from the given paragraph of text.
The RUN_DIRECTION attribute in the text, if present, determines the base
direction (left-to-right or right-to-left). If not present, the base
direction is computes using the Unicode Bidirectional Algorithm, defaulting to left-to-right
if there are no strong directional characters in the text. This attribute, if
present, must be applied to all the text in the paragraph.
The BIDI_EMBEDDING attribute in the text, if present, represents embedding level
information. Negative values from -1 to -62 indicate overrides at the absolute value
of the level. Positive values from 1 to 62 indicate embeddings. Where values are
zero or not defined, the base embedding level as determined by the base direction
is assumed.
The NUMERIC_SHAPING attribute in the text, if present, converts European digits to
other decimal digits before running the bidi algorithm. This attribute, if present,
must be applied to all the text in the paragraph.
Params: - paragraph – a paragraph of text with optional character and paragraph attribute information
See Also: - BIDI_EMBEDDING.BIDI_EMBEDDING
- NUMERIC_SHAPING.NUMERIC_SHAPING
- RUN_DIRECTION.RUN_DIRECTION
/**
* Create Bidi from the given paragraph of text.
* <p>
* The RUN_DIRECTION attribute in the text, if present, determines the base
* direction (left-to-right or right-to-left). If not present, the base
* direction is computes using the Unicode Bidirectional Algorithm, defaulting to left-to-right
* if there are no strong directional characters in the text. This attribute, if
* present, must be applied to all the text in the paragraph.
* <p>
* The BIDI_EMBEDDING attribute in the text, if present, represents embedding level
* information. Negative values from -1 to -62 indicate overrides at the absolute value
* of the level. Positive values from 1 to 62 indicate embeddings. Where values are
* zero or not defined, the base embedding level as determined by the base direction
* is assumed.
* <p>
* The NUMERIC_SHAPING attribute in the text, if present, converts European digits to
* other decimal digits before running the bidi algorithm. This attribute, if present,
* must be applied to all the text in the paragraph.
*
* @param paragraph a paragraph of text with optional character and paragraph attribute information
*
* @see java.awt.font.TextAttribute#BIDI_EMBEDDING
* @see java.awt.font.TextAttribute#NUMERIC_SHAPING
* @see java.awt.font.TextAttribute#RUN_DIRECTION
*/
public Bidi(AttributedCharacterIterator paragraph) {
if (paragraph == null) {
throw new IllegalArgumentException("paragraph is null");
}
bidiBase = new BidiBase(0, 0);
bidiBase.setPara(paragraph);
}
Create Bidi from the given text, embedding, and direction information.
The embeddings array may be null. If present, the values represent embedding level
information. Negative values from -1 to -61 indicate overrides at the absolute value
of the level. Positive values from 1 to 61 indicate embeddings. Where values are
zero, the base embedding level as determined by the base direction is assumed.
Params: - text – an array containing the paragraph of text to process.
- textStart – the index into the text array of the start of the paragraph.
- embeddings – an array containing embedding values for each character in the paragraph.
This can be null, in which case it is assumed that there is no external embedding information.
- embStart – the index into the embedding array of the start of the paragraph.
- paragraphLength – the length of the paragraph in the text and embeddings arrays.
- flags – a collection of flags that control the algorithm. The
algorithm understands the flags DIRECTION_LEFT_TO_RIGHT, DIRECTION_RIGHT_TO_LEFT,
DIRECTION_DEFAULT_LEFT_TO_RIGHT, and DIRECTION_DEFAULT_RIGHT_TO_LEFT.
Other values are reserved.
/**
* Create Bidi from the given text, embedding, and direction information.
* The embeddings array may be null. If present, the values represent embedding level
* information. Negative values from -1 to -61 indicate overrides at the absolute value
* of the level. Positive values from 1 to 61 indicate embeddings. Where values are
* zero, the base embedding level as determined by the base direction is assumed.
* @param text an array containing the paragraph of text to process.
* @param textStart the index into the text array of the start of the paragraph.
* @param embeddings an array containing embedding values for each character in the paragraph.
* This can be null, in which case it is assumed that there is no external embedding information.
* @param embStart the index into the embedding array of the start of the paragraph.
* @param paragraphLength the length of the paragraph in the text and embeddings arrays.
* @param flags a collection of flags that control the algorithm. The
* algorithm understands the flags DIRECTION_LEFT_TO_RIGHT, DIRECTION_RIGHT_TO_LEFT,
* DIRECTION_DEFAULT_LEFT_TO_RIGHT, and DIRECTION_DEFAULT_RIGHT_TO_LEFT.
* Other values are reserved.
*/
public Bidi(char[] text, int textStart, byte[] embeddings, int embStart, int paragraphLength, int flags) {
if (text == null) {
throw new IllegalArgumentException("text is null");
}
if (paragraphLength < 0) {
throw new IllegalArgumentException("bad length: " + paragraphLength);
}
if (textStart < 0 || paragraphLength > text.length - textStart) {
throw new IllegalArgumentException("bad range: " + textStart +
" length: " + paragraphLength +
" for text of length: " + text.length);
}
if (embeddings != null && (embStart < 0 || paragraphLength > embeddings.length - embStart)) {
throw new IllegalArgumentException("bad range: " + embStart +
" length: " + paragraphLength +
" for embeddings of length: " + text.length);
}
bidiBase = new BidiBase(text, textStart, embeddings, embStart, paragraphLength, flags);
}
Create a Bidi object representing the bidi information on a line of text within
the paragraph represented by the current Bidi. This call is not required if the
entire paragraph fits on one line.
Params: - lineStart – the offset from the start of the paragraph to the start of the line.
- lineLimit – the offset from the start of the paragraph to the limit of the line.
Returns: a Bidi
object
/**
* Create a Bidi object representing the bidi information on a line of text within
* the paragraph represented by the current Bidi. This call is not required if the
* entire paragraph fits on one line.
*
* @param lineStart the offset from the start of the paragraph to the start of the line.
* @param lineLimit the offset from the start of the paragraph to the limit of the line.
* @return a {@code Bidi} object
*/
public Bidi createLineBidi(int lineStart, int lineLimit) {
AttributedString astr = new AttributedString("");
Bidi newBidi = new Bidi(astr.getIterator());
return bidiBase.setLine(this, bidiBase, newBidi, newBidi.bidiBase, lineStart, lineLimit);
}
Return true if the line is not left-to-right or right-to-left. This means it either has mixed runs of left-to-right
and right-to-left text, or the base direction differs from the direction of the only run of text.
Returns: true if the line is not left-to-right or right-to-left.
/**
* Return true if the line is not left-to-right or right-to-left. This means it either has mixed runs of left-to-right
* and right-to-left text, or the base direction differs from the direction of the only run of text.
*
* @return true if the line is not left-to-right or right-to-left.
*/
public boolean isMixed() {
return bidiBase.isMixed();
}
Return true if the line is all left-to-right text and the base direction is left-to-right.
Returns: true if the line is all left-to-right text and the base direction is left-to-right
/**
* Return true if the line is all left-to-right text and the base direction is left-to-right.
*
* @return true if the line is all left-to-right text and the base direction is left-to-right
*/
public boolean isLeftToRight() {
return bidiBase.isLeftToRight();
}
Return true if the line is all right-to-left text, and the base direction is right-to-left.
Returns: true if the line is all right-to-left text, and the base direction is right-to-left
/**
* Return true if the line is all right-to-left text, and the base direction is right-to-left.
* @return true if the line is all right-to-left text, and the base direction is right-to-left
*/
public boolean isRightToLeft() {
return bidiBase.isRightToLeft();
}
Return the length of text in the line.
Returns: the length of text in the line
/**
* Return the length of text in the line.
* @return the length of text in the line
*/
public int getLength() {
return bidiBase.getLength();
}
Return true if the base direction is left-to-right.
Returns: true if the base direction is left-to-right
/**
* Return true if the base direction is left-to-right.
* @return true if the base direction is left-to-right
*/
public boolean baseIsLeftToRight() {
return bidiBase.baseIsLeftToRight();
}
Return the base level (0 if left-to-right, 1 if right-to-left).
Returns: the base level
/**
* Return the base level (0 if left-to-right, 1 if right-to-left).
* @return the base level
*/
public int getBaseLevel() {
return bidiBase.getParaLevel();
}
Return the resolved level of the character at offset. If offset is < 0 or ≥ the length of the line, return the base direction level. Params: - offset – the index of the character for which to return the level
Returns: the resolved level of the character at offset
/**
* Return the resolved level of the character at offset. If offset is
* {@literal <} 0 or ≥ the length of the line, return the base direction
* level.
*
* @param offset the index of the character for which to return the level
* @return the resolved level of the character at offset
*/
public int getLevelAt(int offset) {
return bidiBase.getLevelAt(offset);
}
Return the number of level runs.
Returns: the number of level runs
/**
* Return the number of level runs.
* @return the number of level runs
*/
public int getRunCount() {
return bidiBase.countRuns();
}
Return the level of the nth logical run in this line.
Params: - run – the index of the run, between 0 and
getRunCount()
Returns: the level of the run
/**
* Return the level of the nth logical run in this line.
* @param run the index of the run, between 0 and <code>getRunCount()</code>
* @return the level of the run
*/
public int getRunLevel(int run) {
return bidiBase.getRunLevel(run);
}
Return the index of the character at the start of the nth logical run in this line, as
an offset from the start of the line.
Params: - run – the index of the run, between 0 and
getRunCount()
Returns: the start of the run
/**
* Return the index of the character at the start of the nth logical run in this line, as
* an offset from the start of the line.
* @param run the index of the run, between 0 and <code>getRunCount()</code>
* @return the start of the run
*/
public int getRunStart(int run) {
return bidiBase.getRunStart(run);
}
Return the index of the character past the end of the nth logical run in this line, as
an offset from the start of the line. For example, this will return the length
of the line for the last run on the line.
Params: - run – the index of the run, between 0 and
getRunCount()
Returns: limit the limit of the run
/**
* Return the index of the character past the end of the nth logical run in this line, as
* an offset from the start of the line. For example, this will return the length
* of the line for the last run on the line.
* @param run the index of the run, between 0 and <code>getRunCount()</code>
* @return limit the limit of the run
*/
public int getRunLimit(int run) {
return bidiBase.getRunLimit(run);
}
Return true if the specified text requires bidi analysis. If this returns false,
the text will display left-to-right. Clients can then avoid constructing a Bidi object.
Text in the Arabic Presentation Forms area of Unicode is presumed to already be shaped
and ordered for display, and so will not cause this function to return true.
Params: - text – the text containing the characters to test
- start – the start of the range of characters to test
- limit – the limit of the range of characters to test
Returns: true if the range of characters requires bidi analysis
/**
* Return true if the specified text requires bidi analysis. If this returns false,
* the text will display left-to-right. Clients can then avoid constructing a Bidi object.
* Text in the Arabic Presentation Forms area of Unicode is presumed to already be shaped
* and ordered for display, and so will not cause this function to return true.
*
* @param text the text containing the characters to test
* @param start the start of the range of characters to test
* @param limit the limit of the range of characters to test
* @return true if the range of characters requires bidi analysis
*/
public static boolean requiresBidi(char[] text, int start, int limit) {
return BidiBase.requiresBidi(text, start, limit);
}
Reorder the objects in the array into visual order based on their levels.
This is a utility function to use when you have a collection of objects
representing runs of text in logical order, each run containing text
at a single level. The elements at index
from
objectStart
up to objectStart + count
in the objects array will be reordered into visual order assuming
each run of text has the level indicated by the corresponding element
in the levels array (at index - objectStart + levelStart
).
Params: - levels – an array representing the bidi level of each object
- levelStart – the start position in the levels array
- objects – the array of objects to be reordered into visual order
- objectStart – the start position in the objects array
- count – the number of objects to reorder
/**
* Reorder the objects in the array into visual order based on their levels.
* This is a utility function to use when you have a collection of objects
* representing runs of text in logical order, each run containing text
* at a single level. The elements at <code>index</code> from
* <code>objectStart</code> up to <code>objectStart + count</code>
* in the objects array will be reordered into visual order assuming
* each run of text has the level indicated by the corresponding element
* in the levels array (at <code>index - objectStart + levelStart</code>).
*
* @param levels an array representing the bidi level of each object
* @param levelStart the start position in the levels array
* @param objects the array of objects to be reordered into visual order
* @param objectStart the start position in the objects array
* @param count the number of objects to reorder
*/
public static void reorderVisually(byte[] levels, int levelStart, Object[] objects, int objectStart, int count) {
BidiBase.reorderVisually(levels, levelStart, objects, objectStart, count);
}
Display the bidi internal state, used in debugging.
/**
* Display the bidi internal state, used in debugging.
*/
public String toString() {
return bidiBase.toString();
}
}