/*
 * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.io;

A FilterInputStream contains some other input stream, which it uses as its basic source of data, possibly transforming the data along the way or providing additional functionality. The class FilterInputStream itself simply overrides all methods of InputStream with versions that pass all requests to the contained input stream. Subclasses of FilterInputStream may further override some of these methods and may also provide additional methods and fields.
Author: Jonathan Payne
Since: 1.0
/** * A <code>FilterInputStream</code> contains * some other input stream, which it uses as * its basic source of data, possibly transforming * the data along the way or providing additional * functionality. The class <code>FilterInputStream</code> * itself simply overrides all methods of * <code>InputStream</code> with versions that * pass all requests to the contained input * stream. Subclasses of <code>FilterInputStream</code> * may further override some of these methods * and may also provide additional methods * and fields. * * @author Jonathan Payne * @since 1.0 */
public class FilterInputStream extends InputStream {
The input stream to be filtered.
/** * The input stream to be filtered. */
protected volatile InputStream in;
Creates a FilterInputStream by assigning the argument in to the field this.in so as to remember it for later use.
Params:
  • in – the underlying input stream, or null if this instance is to be created without an underlying stream.
/** * Creates a <code>FilterInputStream</code> * by assigning the argument <code>in</code> * to the field <code>this.in</code> so as * to remember it for later use. * * @param in the underlying input stream, or <code>null</code> if * this instance is to be created without an underlying stream. */
protected FilterInputStream(InputStream in) { this.in = in; }
Reads the next byte of data from this input stream. The value byte is returned as an int in the range 0 to 255. If no byte is available because the end of the stream has been reached, the value -1 is returned. This method blocks until input data is available, the end of the stream is detected, or an exception is thrown.

This method simply performs in.read() and returns the result.

Throws:
See Also:
Returns: the next byte of data, or -1 if the end of the stream is reached.
/** * Reads the next byte of data from this input stream. The value * byte is returned as an <code>int</code> in the range * <code>0</code> to <code>255</code>. If no byte is available * because the end of the stream has been reached, the value * <code>-1</code> is returned. This method blocks until input data * is available, the end of the stream is detected, or an exception * is thrown. * <p> * This method * simply performs <code>in.read()</code> and returns the result. * * @return the next byte of data, or <code>-1</code> if the end of the * stream is reached. * @exception IOException if an I/O error occurs. * @see java.io.FilterInputStream#in */
public int read() throws IOException { return in.read(); }
Reads up to b.length bytes of data from this input stream into an array of bytes. This method blocks until some input is available.

This method simply performs the call read(b, 0, b.length) and returns the result. It is important that it does not do in.read(b) instead; certain subclasses of FilterInputStream depend on the implementation strategy actually used.

Params:
  • b – the buffer into which the data is read.
Throws:
See Also:
Returns: the total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream has been reached.
/** * Reads up to <code>b.length</code> bytes of data from this * input stream into an array of bytes. This method blocks until some * input is available. * <p> * This method simply performs the call * <code>read(b, 0, b.length)</code> and returns * the result. It is important that it does * <i>not</i> do <code>in.read(b)</code> instead; * certain subclasses of <code>FilterInputStream</code> * depend on the implementation strategy actually * used. * * @param b the buffer into which the data is read. * @return the total number of bytes read into the buffer, or * <code>-1</code> if there is no more data because the end of * the stream has been reached. * @exception IOException if an I/O error occurs. * @see java.io.FilterInputStream#read(byte[], int, int) */
public int read(byte b[]) throws IOException { return read(b, 0, b.length); }
Reads up to len bytes of data from this input stream into an array of bytes. If len is not zero, the method blocks until some input is available; otherwise, no bytes are read and 0 is returned.

This method simply performs in.read(b, off, len) and returns the result.

Params:
  • b – the buffer into which the data is read.
  • off – the start offset in the destination array b
  • len – the maximum number of bytes read.
Throws:
See Also:
Returns: the total number of bytes read into the buffer, or -1 if there is no more data because the end of the stream has been reached.
/** * Reads up to <code>len</code> bytes of data from this input stream * into an array of bytes. If <code>len</code> is not zero, the method * blocks until some input is available; otherwise, no * bytes are read and <code>0</code> is returned. * <p> * This method simply performs <code>in.read(b, off, len)</code> * and returns the result. * * @param b the buffer into which the data is read. * @param off the start offset in the destination array <code>b</code> * @param len the maximum number of bytes read. * @return the total number of bytes read into the buffer, or * <code>-1</code> if there is no more data because the end of * the stream has been reached. * @exception NullPointerException If <code>b</code> is <code>null</code>. * @exception IndexOutOfBoundsException If <code>off</code> is negative, * <code>len</code> is negative, or <code>len</code> is greater than * <code>b.length - off</code> * @exception IOException if an I/O error occurs. * @see java.io.FilterInputStream#in */
public int read(byte b[], int off, int len) throws IOException { return in.read(b, off, len); }
Skips over and discards n bytes of data from the input stream. The skip method may, for a variety of reasons, end up skipping over some smaller number of bytes, possibly 0. The actual number of bytes skipped is returned.

This method simply performs in.skip(n).

Params:
  • n – the number of bytes to be skipped.
Throws:
Returns: the actual number of bytes skipped.
/** * Skips over and discards <code>n</code> bytes of data from the * input stream. The <code>skip</code> method may, for a variety of * reasons, end up skipping over some smaller number of bytes, * possibly <code>0</code>. The actual number of bytes skipped is * returned. * <p> * This method simply performs <code>in.skip(n)</code>. * * @param n the number of bytes to be skipped. * @return the actual number of bytes skipped. * @throws IOException if {@code in.skip(n)} throws an IOException. */
public long skip(long n) throws IOException { return in.skip(n); }
Returns an estimate of the number of bytes that can be read (or skipped over) from this input stream without blocking by the next caller of a method for this input stream. The next caller might be the same thread or another thread. A single read or skip of this many bytes will not block, but may read or skip fewer bytes.

This method returns the result of in.available().

Throws:
Returns: an estimate of the number of bytes that can be read (or skipped over) from this input stream without blocking.
/** * Returns an estimate of the number of bytes that can be read (or * skipped over) from this input stream without blocking by the next * caller of a method for this input stream. The next caller might be * the same thread or another thread. A single read or skip of this * many bytes will not block, but may read or skip fewer bytes. * <p> * This method returns the result of {@link #in in}.available(). * * @return an estimate of the number of bytes that can be read (or skipped * over) from this input stream without blocking. * @exception IOException if an I/O error occurs. */
public int available() throws IOException { return in.available(); }
Closes this input stream and releases any system resources associated with the stream. This method simply performs in.close().
Throws:
  • IOException – if an I/O error occurs.
See Also:
/** * Closes this input stream and releases any system resources * associated with the stream. * This * method simply performs <code>in.close()</code>. * * @exception IOException if an I/O error occurs. * @see java.io.FilterInputStream#in */
public void close() throws IOException { in.close(); }
Marks the current position in this input stream. A subsequent call to the reset method repositions this stream at the last marked position so that subsequent reads re-read the same bytes.

The readlimit argument tells this input stream to allow that many bytes to be read before the mark position gets invalidated.

This method simply performs in.mark(readlimit).

Params:
  • readlimit – the maximum limit of bytes that can be read before the mark position becomes invalid.
See Also:
/** * Marks the current position in this input stream. A subsequent * call to the <code>reset</code> method repositions this stream at * the last marked position so that subsequent reads re-read the same bytes. * <p> * The <code>readlimit</code> argument tells this input stream to * allow that many bytes to be read before the mark position gets * invalidated. * <p> * This method simply performs <code>in.mark(readlimit)</code>. * * @param readlimit the maximum limit of bytes that can be read before * the mark position becomes invalid. * @see java.io.FilterInputStream#in * @see java.io.FilterInputStream#reset() */
public synchronized void mark(int readlimit) { in.mark(readlimit); }
Repositions this stream to the position at the time the mark method was last called on this input stream.

This method simply performs in.reset().

Stream marks are intended to be used in situations where you need to read ahead a little to see what's in the stream. Often this is most easily done by invoking some general parser. If the stream is of the type handled by the parse, it just chugs along happily. If the stream is not of that type, the parser should toss an exception when it fails. If this happens within readlimit bytes, it allows the outer code to reset the stream and try another parser.

Throws:
  • IOException – if the stream has not been marked or if the mark has been invalidated.
See Also:
/** * Repositions this stream to the position at the time the * <code>mark</code> method was last called on this input stream. * <p> * This method * simply performs <code>in.reset()</code>. * <p> * Stream marks are intended to be used in * situations where you need to read ahead a little to see what's in * the stream. Often this is most easily done by invoking some * general parser. If the stream is of the type handled by the * parse, it just chugs along happily. If the stream is not of * that type, the parser should toss an exception when it fails. * If this happens within readlimit bytes, it allows the outer * code to reset the stream and try another parser. * * @exception IOException if the stream has not been marked or if the * mark has been invalidated. * @see java.io.FilterInputStream#in * @see java.io.FilterInputStream#mark(int) */
public synchronized void reset() throws IOException { in.reset(); }
Tests if this input stream supports the mark and reset methods. This method simply performs in.markSupported().
See Also:
Returns: true if this stream type supports the mark and reset method; false otherwise.
/** * Tests if this input stream supports the <code>mark</code> * and <code>reset</code> methods. * This method * simply performs <code>in.markSupported()</code>. * * @return <code>true</code> if this stream type supports the * <code>mark</code> and <code>reset</code> method; * <code>false</code> otherwise. * @see java.io.FilterInputStream#in * @see java.io.InputStream#mark(int) * @see java.io.InputStream#reset() */
public boolean markSupported() { return in.markSupported(); } }