/*
 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package jdk.nashorn.internal.codegen;

import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.Map;
import jdk.nashorn.internal.IntDeque;
import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.Block;
import jdk.nashorn.internal.ir.Expression;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.LexicalContextNode;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.Symbol;
import jdk.nashorn.internal.ir.WithNode;

A lexical context that also tracks if we have any dynamic scopes in the context. Such scopes can have new variables introduced into them at run time - a with block or a function directly containing an eval call. Furthermore, this class keeps track of current discard state, which the current method emitter being used is, the current compile unit, and local variable indexes
/** * A lexical context that also tracks if we have any dynamic scopes in the context. Such scopes can have new * variables introduced into them at run time - a with block or a function directly containing an eval call. * Furthermore, this class keeps track of current discard state, which the current method emitter being used is, * the current compile unit, and local variable indexes */
final class CodeGeneratorLexicalContext extends LexicalContext { private int dynamicScopeCount;
Map of shared scope call sites
/** Map of shared scope call sites */
private final Map<SharedScopeCall, SharedScopeCall> scopeCalls = new HashMap<>();
Compile unit stack - every time we start a sub method (e.g. a split) we push one
/** Compile unit stack - every time we start a sub method (e.g. a split) we push one */
private final Deque<CompileUnit> compileUnits = new ArrayDeque<>();
Method emitter stack - every time we start a sub method (e.g. a split) we push one
/** Method emitter stack - every time we start a sub method (e.g. a split) we push one */
private final Deque<MethodEmitter> methodEmitters = new ArrayDeque<>();
The discard stack - whenever we evaluate an expression that will be discarded, we push it on this stack. Various implementations of expression code emitter can choose to emit code that'll discard the expression themselves, or ignore it in which case CodeGenerator.loadAndDiscard() will explicitly emit a pop instruction.
/** The discard stack - whenever we evaluate an expression that will be discarded, we push it on this stack. Various * implementations of expression code emitter can choose to emit code that'll discard the expression themselves, or * ignore it in which case CodeGenerator.loadAndDiscard() will explicitly emit a pop instruction. */
private final Deque<Expression> discard = new ArrayDeque<>(); private final Deque<Map<String, Collection<Label>>> unwarrantedOptimismHandlers = new ArrayDeque<>(); private final Deque<StringBuilder> slotTypesDescriptors = new ArrayDeque<>(); private final IntDeque splitLiterals = new IntDeque();
A stack tracking the next free local variable slot in the blocks. There's one entry for every block currently on the lexical context stack.
/** A stack tracking the next free local variable slot in the blocks. There's one entry for every block * currently on the lexical context stack. */
private int[] nextFreeSlots = new int[16];
size of next free slot vector
/** size of next free slot vector */
private int nextFreeSlotsSize; private boolean isWithBoundary(final Object node) { return node instanceof Block && !isEmpty() && peek() instanceof WithNode; } @Override public <T extends LexicalContextNode> T push(final T node) { if (isWithBoundary(node)) { dynamicScopeCount++; } else if (node instanceof FunctionNode) { if (((FunctionNode)node).inDynamicContext()) { dynamicScopeCount++; } splitLiterals.push(0); } return super.push(node); } void enterSplitLiteral() { splitLiterals.getAndIncrement(); pushFreeSlots(methodEmitters.peek().getUsedSlotsWithLiveTemporaries()); } void exitSplitLiteral() { final int count = splitLiterals.decrementAndGet(); assert count >= 0; } @Override public <T extends Node> T pop(final T node) { final T popped = super.pop(node); if (isWithBoundary(node)) { dynamicScopeCount--; assert dynamicScopeCount >= 0; } else if (node instanceof FunctionNode) { if (((FunctionNode)node).inDynamicContext()) { dynamicScopeCount--; assert dynamicScopeCount >= 0; } assert splitLiterals.peek() == 0; splitLiterals.pop(); } return popped; } boolean inDynamicScope() { return dynamicScopeCount > 0; } boolean inSplitLiteral() { return !splitLiterals.isEmpty() && splitLiterals.peek() > 0; } MethodEmitter pushMethodEmitter(final MethodEmitter newMethod) { methodEmitters.push(newMethod); return newMethod; } MethodEmitter popMethodEmitter(final MethodEmitter oldMethod) { assert methodEmitters.peek() == oldMethod; methodEmitters.pop(); return methodEmitters.isEmpty() ? null : methodEmitters.peek(); } void pushUnwarrantedOptimismHandlers() { unwarrantedOptimismHandlers.push(new HashMap<String, Collection<Label>>()); slotTypesDescriptors.push(new StringBuilder()); } Map<String, Collection<Label>> getUnwarrantedOptimismHandlers() { return unwarrantedOptimismHandlers.peek(); } Map<String, Collection<Label>> popUnwarrantedOptimismHandlers() { slotTypesDescriptors.pop(); return unwarrantedOptimismHandlers.pop(); } CompileUnit pushCompileUnit(final CompileUnit newUnit) { compileUnits.push(newUnit); return newUnit; } CompileUnit popCompileUnit(final CompileUnit oldUnit) { assert compileUnits.peek() == oldUnit; final CompileUnit unit = compileUnits.pop(); assert unit.hasCode() : "compile unit popped without code"; unit.setUsed(); return compileUnits.isEmpty() ? null : compileUnits.peek(); } boolean hasCompileUnits() { return !compileUnits.isEmpty(); } Collection<SharedScopeCall> getScopeCalls() { return Collections.unmodifiableCollection(scopeCalls.values()); }
Get a shared static method representing a dynamic scope callsite.
Params:
  • unit – current compile unit
  • symbol – the symbol
  • valueType – the value type of the symbol
  • returnType – the return type
  • paramTypes – the parameter types
  • flags – the callsite flags
  • isOptimistic – is this an optimistic call
Returns:an object representing a shared scope call
/** * Get a shared static method representing a dynamic scope callsite. * * @param unit current compile unit * @param symbol the symbol * @param valueType the value type of the symbol * @param returnType the return type * @param paramTypes the parameter types * @param flags the callsite flags * @param isOptimistic is this an optimistic call * @return an object representing a shared scope call */
SharedScopeCall getScopeCall(final CompileUnit unit, final Symbol symbol, final Type valueType, final Type returnType, final Type[] paramTypes, final int flags, final boolean isOptimistic) { final SharedScopeCall scopeCall = new SharedScopeCall(symbol, valueType, returnType, paramTypes, flags, isOptimistic); if (scopeCalls.containsKey(scopeCall)) { return scopeCalls.get(scopeCall); } scopeCall.setClassAndName(unit, getCurrentFunction().uniqueName(":scopeCall")); scopeCalls.put(scopeCall, scopeCall); return scopeCall; }
Get a shared static method representing a dynamic scope get access.
Params:
  • unit – current compile unit
  • symbol – the symbol
  • valueType – the type of the variable
  • flags – the callsite flags
  • isOptimistic – is this an optimistic get
Returns:an object representing a shared scope get
/** * Get a shared static method representing a dynamic scope get access. * * @param unit current compile unit * @param symbol the symbol * @param valueType the type of the variable * @param flags the callsite flags * @param isOptimistic is this an optimistic get * @return an object representing a shared scope get */
SharedScopeCall getScopeGet(final CompileUnit unit, final Symbol symbol, final Type valueType, final int flags, final boolean isOptimistic) { return getScopeCall(unit, symbol, valueType, valueType, null, flags, isOptimistic); } void onEnterBlock(final Block block) { pushFreeSlots(assignSlots(block, isFunctionBody() ? 0 : getUsedSlotCount())); } private void pushFreeSlots(final int freeSlots) { if (nextFreeSlotsSize == nextFreeSlots.length) { final int[] newNextFreeSlots = new int[nextFreeSlotsSize * 2]; System.arraycopy(nextFreeSlots, 0, newNextFreeSlots, 0, nextFreeSlotsSize); nextFreeSlots = newNextFreeSlots; } nextFreeSlots[nextFreeSlotsSize++] = freeSlots; } int getUsedSlotCount() { return nextFreeSlots[nextFreeSlotsSize - 1]; } void releaseSlots() { --nextFreeSlotsSize; final int undefinedFromSlot = nextFreeSlotsSize == 0 ? 0 : nextFreeSlots[nextFreeSlotsSize - 1]; if(!slotTypesDescriptors.isEmpty()) { slotTypesDescriptors.peek().setLength(undefinedFromSlot); } methodEmitters.peek().undefineLocalVariables(undefinedFromSlot, false); } private int assignSlots(final Block block, final int firstSlot) { int fromSlot = firstSlot; final MethodEmitter method = methodEmitters.peek(); for (final Symbol symbol : block.getSymbols()) { if (symbol.hasSlot()) { symbol.setFirstSlot(fromSlot); final int toSlot = fromSlot + symbol.slotCount(); method.defineBlockLocalVariable(fromSlot, toSlot); fromSlot = toSlot; } } return fromSlot; } static Type getTypeForSlotDescriptor(final char typeDesc) { // Recognizing both lowercase and uppercase as we're using both to signify symbol boundaries; see // MethodEmitter.markSymbolBoundariesInLvarTypesDescriptor(). switch (typeDesc) { case 'I': case 'i': return Type.INT; case 'J': case 'j': return Type.LONG; case 'D': case 'd': return Type.NUMBER; case 'A': case 'a': return Type.OBJECT; case 'U': case 'u': return Type.UNKNOWN; default: throw new AssertionError(); } } void pushDiscard(final Expression expr) { discard.push(expr); } boolean popDiscardIfCurrent(final Expression expr) { if (isCurrentDiscard(expr)) { discard.pop(); return true; } return false; } boolean isCurrentDiscard(final Expression expr) { return discard.peek() == expr; } int quickSlot(final Type type) { return methodEmitters.peek().defineTemporaryLocalVariable(type.getSlots()); } }