/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package com.sun.tools.jdeps;
import static com.sun.tools.jdeps.JdepsFilter.DEFAULT_FILTER;
import static com.sun.tools.jdeps.Module.trace;
import static com.sun.tools.jdeps.Graph.*;
import java.lang.module.ModuleDescriptor.Requires;
import java.io.IOException;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import java.util.stream.Collectors;
import java.util.stream.Stream;
Inverse transitive dependency analysis (compile-time view)
/**
* Inverse transitive dependency analysis (compile-time view)
*/
public class InverseDepsAnalyzer extends DepsAnalyzer {
// the end points for the resulting paths to be reported
private final Map<Archive, Set<Archive>> endPoints = new HashMap<>();
// target archives for inverse transitive dependence analysis
private final Set<Archive> targets = new HashSet<>();
public InverseDepsAnalyzer(JdepsConfiguration config,
JdepsFilter filter,
JdepsWriter writer,
Analyzer.Type verbose,
boolean apiOnly) {
super(config, filter, writer, verbose, apiOnly);
}
public boolean run() throws IOException {
try {
if (apiOnly) {
finder.parseExportedAPIs(rootArchives.stream());
} else {
finder.parse(rootArchives.stream());
}
archives.addAll(rootArchives);
Set<Archive> archives = archives();
// If -package or -regex is specified, the archives that reference
// the matching types are used as the targets for inverse
// transitive analysis. If -requires is specified, the
// specified modules are the targets.
if (filter.requiresFilter().isEmpty()) {
targets.addAll(archives);
} else {
filter.requiresFilter().stream()
.map(configuration::findModule)
.flatMap(Optional::stream)
.forEach(targets::add);
}
// If -package or -regex is specified, the end points are
// the matching archives. If -requires is specified,
// the end points are the modules specified in -requires.
if (filter.requiresFilter().isEmpty()) {
Map<Archive, Set<Archive>> dependences = finder.dependences();
targets.forEach(source -> endPoints.put(source, dependences.get(source)));
} else {
targets.forEach(t -> endPoints.put(t, Collections.emptySet()));
}
analyzer.run(archives, finder.locationToArchive());
// print the first-level of dependencies
if (writer != null) {
writer.generateOutput(archives, analyzer);
}
} finally {
finder.shutdown();
}
return true;
}
Returns the target archives determined from the dependency analysis.
Inverse transitive dependency will find all nodes that depend
upon the returned set of archives directly and indirectly.
/**
* Returns the target archives determined from the dependency analysis.
*
* Inverse transitive dependency will find all nodes that depend
* upon the returned set of archives directly and indirectly.
*/
public Set<Archive> targets() {
return Collections.unmodifiableSet(targets);
}
Finds all inverse transitive dependencies using the given requires set
as the targets, if non-empty. If the given requires set is empty,
use the archives depending the packages specified in -regex or -p options.
/**
* Finds all inverse transitive dependencies using the given requires set
* as the targets, if non-empty. If the given requires set is empty,
* use the archives depending the packages specified in -regex or -p options.
*/
public Set<Deque<Archive>> inverseDependences() throws IOException {
// create a new dependency finder to do the analysis
DependencyFinder dependencyFinder = new DependencyFinder(configuration, DEFAULT_FILTER);
try {
// parse all archives in unnamed module to get compile-time dependences
Stream<Archive> archives =
Stream.concat(configuration.initialArchives().stream(),
configuration.classPathArchives().stream());
if (apiOnly) {
dependencyFinder.parseExportedAPIs(archives);
} else {
dependencyFinder.parse(archives);
}
Graph.Builder<Archive> builder = new Graph.Builder<>();
// include all target nodes
targets().forEach(builder::addNode);
// transpose the module graph
configuration.getModules().values().stream()
.forEach(m -> {
builder.addNode(m);
m.descriptor().requires().stream()
.map(Requires::name)
.map(configuration::findModule) // must be present
.forEach(v -> builder.addEdge(v.get(), m));
});
// add the dependences from the analysis
Map<Archive, Set<Archive>> dependences = dependencyFinder.dependences();
dependences.entrySet().stream()
.forEach(e -> {
Archive u = e.getKey();
builder.addNode(u);
e.getValue().forEach(v -> builder.addEdge(v, u));
});
// transposed dependence graph.
Graph<Archive> graph = builder.build();
trace("targets: %s%n", targets());
// Traverse from the targets and find all paths
// rebuild a graph with all nodes that depends on targets
// targets directly and indirectly
return targets().stream()
.map(t -> findPaths(graph, t))
.flatMap(Set::stream)
.collect(Collectors.toSet());
} finally {
dependencyFinder.shutdown();
}
}
Returns all paths reachable from the given targets.
/**
* Returns all paths reachable from the given targets.
*/
private Set<Deque<Archive>> findPaths(Graph<Archive> graph, Archive target) {
// path is in reversed order
Deque<Archive> path = new LinkedList<>();
path.push(target);
Set<Edge<Archive>> visited = new HashSet<>();
Deque<Edge<Archive>> deque = new LinkedList<>();
deque.addAll(graph.edgesFrom(target));
if (deque.isEmpty()) {
return makePaths(path).collect(Collectors.toSet());
}
Set<Deque<Archive>> allPaths = new HashSet<>();
while (!deque.isEmpty()) {
Edge<Archive> edge = deque.pop();
if (visited.contains(edge))
continue;
Archive node = edge.v;
path.addLast(node);
visited.add(edge);
Set<Edge<Archive>> unvisitedDeps = graph.edgesFrom(node)
.stream()
.filter(e -> !visited.contains(e))
.collect(Collectors.toSet());
trace("visiting %s %s (%s)%n", edge, path, unvisitedDeps);
if (unvisitedDeps.isEmpty()) {
makePaths(path).forEach(allPaths::add);
path.removeLast();
}
// push unvisited adjacent edges
unvisitedDeps.stream().forEach(deque::push);
// when the adjacent edges of a node are visited, pop it from the path
while (!path.isEmpty()) {
if (visited.containsAll(graph.edgesFrom(path.peekLast())))
path.removeLast();
else
break;
}
}
return allPaths;
}
Prepend end point to the path
/**
* Prepend end point to the path
*/
private Stream<Deque<Archive>> makePaths(Deque<Archive> path) {
Set<Archive> nodes = endPoints.get(path.peekFirst());
if (nodes == null || nodes.isEmpty()) {
return Stream.of(new LinkedList<>(path));
} else {
return nodes.stream().map(n -> {
Deque<Archive> newPath = new LinkedList<>();
newPath.addFirst(n);
newPath.addAll(path);
return newPath;
});
}
}
}