/*
 * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package org.graalvm.compiler.lir.alloc.lsra;

import static jdk.vm.ci.code.CodeUtil.isOdd;
import static jdk.vm.ci.code.ValueUtil.asRegister;
import static jdk.vm.ci.code.ValueUtil.isRegister;
import static org.graalvm.compiler.lir.LIRValueUtil.isStackSlotValue;
import static org.graalvm.compiler.lir.LIRValueUtil.isVariable;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

import org.graalvm.compiler.core.common.alloc.RegisterAllocationConfig.AllocatableRegisters;
import org.graalvm.compiler.core.common.cfg.AbstractBlockBase;
import org.graalvm.compiler.core.common.util.Util;
import org.graalvm.compiler.debug.DebugContext;
import org.graalvm.compiler.debug.GraalError;
import org.graalvm.compiler.debug.Indent;
import org.graalvm.compiler.lir.LIRInstruction;
import org.graalvm.compiler.lir.StandardOp.ValueMoveOp;
import org.graalvm.compiler.lir.alloc.OutOfRegistersException;
import org.graalvm.compiler.lir.alloc.lsra.Interval.RegisterBinding;
import org.graalvm.compiler.lir.alloc.lsra.Interval.RegisterPriority;
import org.graalvm.compiler.lir.alloc.lsra.Interval.SpillState;
import org.graalvm.compiler.lir.alloc.lsra.Interval.State;

import jdk.vm.ci.code.Register;
import jdk.vm.ci.meta.Value;

/**
 */
class LinearScanWalker extends IntervalWalker {

    protected Register[] availableRegs;

    protected final int[] usePos;
    protected final int[] blockPos;

    protected List<Interval>[] spillIntervals;

    private MoveResolver moveResolver; // for ordering spill moves

    private int minReg;

    private int maxReg;

    
Only 10% of the lists in spillIntervals are actually used. But when they are used, they can grow quite long. The maximum length observed was 45 (all numbers taken from a bootstrap run of Graal). Therefore, we initialize spillIntervals with this marker value, and allocate a "real" list only on demand in setUsePos.
/** * Only 10% of the lists in {@link #spillIntervals} are actually used. But when they are used, * they can grow quite long. The maximum length observed was 45 (all numbers taken from a * bootstrap run of Graal). Therefore, we initialize {@link #spillIntervals} with this marker * value, and allocate a "real" list only on demand in {@link #setUsePos}. */
private static final List<Interval> EMPTY_LIST = Collections.emptyList(); // accessors mapped to same functions in class LinearScan int blockCount() { return allocator.blockCount(); } AbstractBlockBase<?> blockAt(int idx) { return allocator.blockAt(idx); } AbstractBlockBase<?> blockOfOpWithId(int opId) { return allocator.blockForId(opId); } LinearScanWalker(LinearScan allocator, Interval unhandledFixedFirst, Interval unhandledAnyFirst) { super(allocator, unhandledFixedFirst, unhandledAnyFirst); moveResolver = allocator.createMoveResolver(); spillIntervals = Util.uncheckedCast(new List<?>[allocator.getRegisters().size()]); for (int i = 0; i < allocator.getRegisters().size(); i++) { spillIntervals[i] = EMPTY_LIST; } usePos = new int[allocator.getRegisters().size()]; blockPos = new int[allocator.getRegisters().size()]; } void initUseLists(boolean onlyProcessUsePos) { for (Register register : availableRegs) { int i = register.number; usePos[i] = Integer.MAX_VALUE; if (!onlyProcessUsePos) { blockPos[i] = Integer.MAX_VALUE; spillIntervals[i].clear(); } } } int maxRegisterNumber() { return maxReg; } int minRegisterNumber() { return minReg; } boolean isRegisterInRange(int reg) { return reg >= minRegisterNumber() && reg <= maxRegisterNumber(); } void excludeFromUse(Interval i) { Value location = i.location(); int i1 = asRegister(location).number; if (isRegisterInRange(i1)) { usePos[i1] = 0; } } void setUsePos(Interval interval, int usePos, boolean onlyProcessUsePos) { if (usePos != -1) { assert usePos != 0 : "must use excludeFromUse to set usePos to 0"; int i = asRegister(interval.location()).number; if (isRegisterInRange(i)) { if (this.usePos[i] > usePos) { this.usePos[i] = usePos; } if (!onlyProcessUsePos) { List<Interval> list = spillIntervals[i]; if (list == EMPTY_LIST) { list = new ArrayList<>(2); spillIntervals[i] = list; } list.add(interval); } } } } void setBlockPos(Interval i, int blockPos) { if (blockPos != -1) { int reg = asRegister(i.location()).number; if (isRegisterInRange(reg)) { if (this.blockPos[reg] > blockPos) { this.blockPos[reg] = blockPos; } if (usePos[reg] > blockPos) { usePos[reg] = blockPos; } } } } void freeExcludeActiveFixed() { Interval interval = activeLists.get(RegisterBinding.Fixed); while (!interval.isEndMarker()) { assert isRegister(interval.location()) : "active interval must have a register assigned"; excludeFromUse(interval); interval = interval.next; } } void freeExcludeActiveAny() { Interval interval = activeLists.get(RegisterBinding.Any); while (!interval.isEndMarker()) { assert isRegister(interval.location()) : "active interval must have a register assigned"; excludeFromUse(interval); interval = interval.next; } } void freeCollectInactiveFixed(Interval current) { Interval interval = inactiveLists.get(RegisterBinding.Fixed); while (!interval.isEndMarker()) { if (current.to() <= interval.currentFrom()) { assert interval.currentIntersectsAt(current) == -1 : "must not intersect"; setUsePos(interval, interval.currentFrom(), true); } else { setUsePos(interval, interval.currentIntersectsAt(current), true); } interval = interval.next; } } void freeCollectInactiveAny(Interval current) { Interval interval = inactiveLists.get(RegisterBinding.Any); while (!interval.isEndMarker()) { setUsePos(interval, interval.currentIntersectsAt(current), true); interval = interval.next; } } void freeCollectUnhandled(RegisterBinding kind, Interval current) { Interval interval = unhandledLists.get(kind); while (!interval.isEndMarker()) { setUsePos(interval, interval.intersectsAt(current), true); if (kind == RegisterBinding.Fixed && current.to() <= interval.from()) { setUsePos(interval, interval.from(), true); } interval = interval.next; } } void spillExcludeActiveFixed() { Interval interval = activeLists.get(RegisterBinding.Fixed); while (!interval.isEndMarker()) { excludeFromUse(interval); interval = interval.next; } } void spillBlockUnhandledFixed(Interval current) { Interval interval = unhandledLists.get(RegisterBinding.Fixed); while (!interval.isEndMarker()) { setBlockPos(interval, interval.intersectsAt(current)); interval = interval.next; } } void spillBlockInactiveFixed(Interval current) { Interval interval = inactiveLists.get(RegisterBinding.Fixed); while (!interval.isEndMarker()) { if (current.to() > interval.currentFrom()) { setBlockPos(interval, interval.currentIntersectsAt(current)); } else { assert interval.currentIntersectsAt(current) == -1 : "invalid optimization: intervals intersect"; } interval = interval.next; } } void spillCollectActiveAny(RegisterPriority registerPriority) { Interval interval = activeLists.get(RegisterBinding.Any); while (!interval.isEndMarker()) { setUsePos(interval, Math.min(interval.nextUsage(registerPriority, currentPosition), interval.to()), false); interval = interval.next; } } void spillCollectInactiveAny(Interval current) { Interval interval = inactiveLists.get(RegisterBinding.Any); while (!interval.isEndMarker()) { if (interval.currentIntersects(current)) { setUsePos(interval, Math.min(interval.nextUsage(RegisterPriority.LiveAtLoopEnd, currentPosition), interval.to()), false); } interval = interval.next; } } void insertMove(int operandId, Interval srcIt, Interval dstIt) { // output all moves here. When source and target are equal, the move is // optimized away later in assignRegNums int opId = (operandId + 1) & ~1; AbstractBlockBase<?> opBlock = allocator.blockForId(opId); assert opId > 0 && allocator.blockForId(opId - 2) == opBlock : "cannot insert move at block boundary"; // calculate index of instruction inside instruction list of current block // the minimal index (for a block with no spill moves) can be calculated because the // numbering of instructions is known. // When the block already contains spill moves, the index must be increased until the // correct index is reached. ArrayList<LIRInstruction> instructions = allocator.getLIR().getLIRforBlock(opBlock); int index = (opId - instructions.get(0).id()) >> 1; assert instructions.get(index).id() <= opId : "error in calculation"; while (instructions.get(index).id() != opId) { index++; assert 0 <= index && index < instructions.size() : "index out of bounds"; } assert 1 <= index && index < instructions.size() : "index out of bounds"; assert instructions.get(index).id() == opId : "error in calculation"; // insert new instruction before instruction at position index moveResolver.moveInsertPosition(instructions, index); moveResolver.addMapping(srcIt, dstIt); } int findOptimalSplitPos(AbstractBlockBase<?> minBlock, AbstractBlockBase<?> maxBlock, int maxSplitPos) { int fromBlockNr = minBlock.getLinearScanNumber(); int toBlockNr = maxBlock.getLinearScanNumber(); assert 0 <= fromBlockNr && fromBlockNr < blockCount() : "out of range"; assert 0 <= toBlockNr && toBlockNr < blockCount() : "out of range"; assert fromBlockNr < toBlockNr : "must cross block boundary"; // Try to split at end of maxBlock. If this would be after // maxSplitPos, then use the begin of maxBlock int optimalSplitPos = allocator.getLastLirInstructionId(maxBlock) + 2; if (optimalSplitPos > maxSplitPos) { optimalSplitPos = allocator.getFirstLirInstructionId(maxBlock); } int minLoopDepth = maxBlock.getLoopDepth(); for (int i = toBlockNr - 1; minLoopDepth > 0 && i >= fromBlockNr; i--) { AbstractBlockBase<?> cur = blockAt(i); if (cur.getLoopDepth() < minLoopDepth) { // block with lower loop-depth found . split at the end of this block minLoopDepth = cur.getLoopDepth(); optimalSplitPos = allocator.getLastLirInstructionId(cur) + 2; } } assert optimalSplitPos > allocator.maxOpId() || allocator.isBlockBegin(optimalSplitPos) : "algorithm must move split pos to block boundary"; return optimalSplitPos; } int findOptimalSplitPos(Interval interval, int minSplitPos, int maxSplitPos, boolean doLoopOptimization) { DebugContext debug = allocator.getDebug(); int optimalSplitPos = -1; if (minSplitPos == maxSplitPos) { // trivial case, no optimization of split position possible if (debug.isLogEnabled()) { debug.log("min-pos and max-pos are equal, no optimization possible"); } optimalSplitPos = minSplitPos; } else { assert minSplitPos < maxSplitPos : "must be true then"; assert minSplitPos > 0 : "cannot access minSplitPos - 1 otherwise"; // reason for using minSplitPos - 1: when the minimal split pos is exactly at the // beginning of a block, then minSplitPos is also a possible split position. // Use the block before as minBlock, because then minBlock.lastLirInstructionId() + 2 == // minSplitPos AbstractBlockBase<?> minBlock = allocator.blockForId(minSplitPos - 1); // reason for using maxSplitPos - 1: otherwise there would be an assert on failure // when an interval ends at the end of the last block of the method // (in this case, maxSplitPos == allocator().maxLirOpId() + 2, and there is no // block at this opId) AbstractBlockBase<?> maxBlock = allocator.blockForId(maxSplitPos - 1); assert minBlock.getLinearScanNumber() <= maxBlock.getLinearScanNumber() : "invalid order"; if (minBlock == maxBlock) { // split position cannot be moved to block boundary : so split as late as possible if (debug.isLogEnabled()) { debug.log("cannot move split pos to block boundary because minPos and maxPos are in same block"); } optimalSplitPos = maxSplitPos; } else { if (interval.hasHoleBetween(maxSplitPos - 1, maxSplitPos) && !allocator.isBlockBegin(maxSplitPos)) { // Do not move split position if the interval has a hole before maxSplitPos. // Intervals resulting from Phi-Functions have more than one definition (marked // as mustHaveRegister) with a hole before each definition. When the register is // needed // for the second definition : an earlier reloading is unnecessary. if (debug.isLogEnabled()) { debug.log("interval has hole just before maxSplitPos, so splitting at maxSplitPos"); } optimalSplitPos = maxSplitPos; } else { // seach optimal block boundary between minSplitPos and maxSplitPos if (debug.isLogEnabled()) { debug.log("moving split pos to optimal block boundary between block B%d and B%d", minBlock.getId(), maxBlock.getId()); } if (doLoopOptimization) { // Loop optimization: if a loop-end marker is found between min- and // max-position : // then split before this loop int loopEndPos = interval.nextUsageExact(RegisterPriority.LiveAtLoopEnd, allocator.getLastLirInstructionId(minBlock) + 2); if (debug.isLogEnabled()) { debug.log("loop optimization: loop end found at pos %d", loopEndPos); } assert loopEndPos > minSplitPos : "invalid order"; if (loopEndPos < maxSplitPos) { // loop-end marker found between min- and max-position // if it is not the end marker for the same loop as the min-position : // then move // the max-position to this loop block. // Desired result: uses tagged as shouldHaveRegister inside a loop cause // a reloading // of the interval (normally, only mustHaveRegister causes a reloading) AbstractBlockBase<?> loopBlock = allocator.blockForId(loopEndPos); if (debug.isLogEnabled()) { debug.log("interval is used in loop that ends in block B%d, so trying to move maxBlock back from B%d to B%d", loopBlock.getId(), maxBlock.getId(), loopBlock.getId()); } assert loopBlock != minBlock : "loopBlock and minBlock must be different because block boundary is needed between"; int maxSpillPos = allocator.getLastLirInstructionId(loopBlock) + 2; optimalSplitPos = findOptimalSplitPos(minBlock, loopBlock, maxSpillPos); if (optimalSplitPos == maxSpillPos) { optimalSplitPos = -1; if (debug.isLogEnabled()) { debug.log("loop optimization not necessary"); } } else { if (debug.isLogEnabled()) { debug.log("loop optimization successful"); } } } } if (optimalSplitPos == -1) { // not calculated by loop optimization optimalSplitPos = findOptimalSplitPos(minBlock, maxBlock, maxSplitPos); } } } } if (debug.isLogEnabled()) { debug.log("optimal split position: %d", optimalSplitPos); } return optimalSplitPos; } // split an interval at the optimal position between minSplitPos and // maxSplitPos in two parts: // 1) the left part has already a location assigned // 2) the right part is sorted into to the unhandled-list @SuppressWarnings("try") void splitBeforeUsage(Interval interval, int minSplitPos, int maxSplitPos) { DebugContext debug = allocator.getDebug(); try (Indent indent = debug.logAndIndent("splitting interval %s between %d and %d", interval, minSplitPos, maxSplitPos)) { assert interval.from() < minSplitPos : "cannot split at start of interval"; assert currentPosition < minSplitPos : "cannot split before current position"; assert minSplitPos <= maxSplitPos : "invalid order"; assert maxSplitPos <= interval.to() : "cannot split after end of interval"; int optimalSplitPos = findOptimalSplitPos(interval, minSplitPos, maxSplitPos, true); assert minSplitPos <= optimalSplitPos && optimalSplitPos <= maxSplitPos : "out of range"; assert optimalSplitPos <= interval.to() : "cannot split after end of interval"; assert optimalSplitPos > interval.from() : "cannot split at start of interval"; if (optimalSplitPos == interval.to() && interval.nextUsage(RegisterPriority.MustHaveRegister, minSplitPos) == Integer.MAX_VALUE) { // the split position would be just before the end of the interval // . no split at all necessary if (debug.isLogEnabled()) { debug.log("no split necessary because optimal split position is at end of interval"); } return; } // must calculate this before the actual split is performed and before split position is // moved to odd opId boolean moveNecessary = !allocator.isBlockBegin(optimalSplitPos) && !interval.hasHoleBetween(optimalSplitPos - 1, optimalSplitPos); if (!allocator.isBlockBegin(optimalSplitPos)) { // move position before actual instruction (odd opId) optimalSplitPos = (optimalSplitPos - 1) | 1; } if (debug.isLogEnabled()) { debug.log("splitting at position %d", optimalSplitPos); } assert allocator.isBlockBegin(optimalSplitPos) || ((optimalSplitPos & 1) == 1) : "split pos must be odd when not on block boundary"; assert !allocator.isBlockBegin(optimalSplitPos) || ((optimalSplitPos & 1) == 0) : "split pos must be even on block boundary"; Interval splitPart = interval.split(optimalSplitPos, allocator); splitPart.setInsertMoveWhenActivated(moveNecessary); assert splitPart.from() >= currentPosition : "cannot append new interval before current walk position"; unhandledLists.addToListSortedByStartAndUsePositions(RegisterBinding.Any, splitPart); if (debug.isLogEnabled()) { debug.log("left interval %s: %s", moveNecessary ? " " : "", interval.logString(allocator)); debug.log("right interval %s: %s", moveNecessary ? "(move)" : "", splitPart.logString(allocator)); } } } // split an interval at the optimal position between minSplitPos and // maxSplitPos in two parts: // 1) the left part has already a location assigned // 2) the right part is always on the stack and therefore ignored in further processing @SuppressWarnings("try") void splitForSpilling(Interval interval) { DebugContext debug = allocator.getDebug(); // calculate allowed range of splitting position int maxSplitPos = currentPosition; int previousUsage = interval.previousUsage(RegisterPriority.ShouldHaveRegister, maxSplitPos); if (previousUsage == currentPosition) { /* * If there is a usage with ShouldHaveRegister priority at the current position fall * back to MustHaveRegister priority. This only happens if register priority was * downgraded to MustHaveRegister in #allocLockedRegister. */ previousUsage = interval.previousUsage(RegisterPriority.MustHaveRegister, maxSplitPos); } int minSplitPos = Math.max(previousUsage + 1, interval.from()); try (Indent indent = debug.logAndIndent("splitting and spilling interval %s between %d and %d", interval, minSplitPos, maxSplitPos)) { assert interval.state == State.Active : "why spill interval that is not active?"; assert interval.from() <= minSplitPos : "cannot split before start of interval"; assert minSplitPos <= maxSplitPos : "invalid order"; assert maxSplitPos < interval.to() : "cannot split at end end of interval"; assert currentPosition < interval.to() : "interval must not end before current position"; if (minSplitPos == interval.from()) { // the whole interval is never used, so spill it entirely to memory try (Indent indent2 = debug.logAndIndent("spilling entire interval because split pos is at beginning of interval (use positions: %d)", interval.usePosList().size())) { assert interval.firstUsage(RegisterPriority.MustHaveRegister) > currentPosition : String.format("interval %s must not have use position before currentPosition %d", interval, currentPosition); allocator.assignSpillSlot(interval); handleSpillSlot(interval); changeSpillState(interval, minSplitPos); // Also kick parent intervals out of register to memory when they have no use // position. This avoids short interval in register surrounded by intervals in // memory . avoid useless moves from memory to register and back Interval parent = interval; while (parent != null && parent.isSplitChild()) { parent = parent.getSplitChildBeforeOpId(parent.from()); if (isRegister(parent.location())) { if (parent.firstUsage(RegisterPriority.ShouldHaveRegister) == Integer.MAX_VALUE) { // parent is never used, so kick it out of its assigned register if (debug.isLogEnabled()) { debug.log("kicking out interval %d out of its register because it is never used", parent.operandNumber); } allocator.assignSpillSlot(parent); handleSpillSlot(parent); } else { // do not go further back because the register is actually used by // the interval parent = null; } } } } } else { // search optimal split pos, split interval and spill only the right hand part int optimalSplitPos = findOptimalSplitPos(interval, minSplitPos, maxSplitPos, false); assert minSplitPos <= optimalSplitPos && optimalSplitPos <= maxSplitPos : "out of range"; assert optimalSplitPos < interval.to() : "cannot split at end of interval"; assert optimalSplitPos >= interval.from() : "cannot split before start of interval"; if (!allocator.isBlockBegin(optimalSplitPos)) { // move position before actual instruction (odd opId) optimalSplitPos = (optimalSplitPos - 1) | 1; } try (Indent indent2 = debug.logAndIndent("splitting at position %d", optimalSplitPos)) { assert allocator.isBlockBegin(optimalSplitPos) || ((optimalSplitPos & 1) == 1) : "split pos must be odd when not on block boundary"; assert !allocator.isBlockBegin(optimalSplitPos) || ((optimalSplitPos & 1) == 0) : "split pos must be even on block boundary"; Interval spilledPart = interval.split(optimalSplitPos, allocator); allocator.assignSpillSlot(spilledPart); handleSpillSlot(spilledPart); changeSpillState(spilledPart, optimalSplitPos); if (!allocator.isBlockBegin(optimalSplitPos)) { if (debug.isLogEnabled()) { debug.log("inserting move from interval %d to %d", interval.operandNumber, spilledPart.operandNumber); } insertMove(optimalSplitPos, interval, spilledPart); } // the currentSplitChild is needed later when moves are inserted for reloading assert spilledPart.currentSplitChild() == interval : "overwriting wrong currentSplitChild"; spilledPart.makeCurrentSplitChild(); if (debug.isLogEnabled()) { debug.log("left interval: %s", interval.logString(allocator)); debug.log("spilled interval : %s", spilledPart.logString(allocator)); } } } } } // called during register allocation private void changeSpillState(Interval interval, int spillPos) { switch (interval.spillState()) { case NoSpillStore: { int defLoopDepth = allocator.blockForId(interval.spillDefinitionPos()).getLoopDepth(); int spillLoopDepth = allocator.blockForId(spillPos).getLoopDepth(); if (defLoopDepth < spillLoopDepth) { /* * The loop depth of the spilling position is higher then the loop depth at the * definition of the interval. Move write to memory out of loop. */ if (LinearScan.Options.LIROptLSRAOptimizeSpillPosition.getValue(allocator.getOptions())) { // find best spill position in dominator the tree interval.setSpillState(SpillState.SpillInDominator); } else { // store at definition of the interval interval.setSpillState(SpillState.StoreAtDefinition); } } else { /* * The interval is currently spilled only once, so for now there is no reason to * store the interval at the definition. */ interval.setSpillState(SpillState.OneSpillStore); } break; } case OneSpillStore: { int defLoopDepth = allocator.blockForId(interval.spillDefinitionPos()).getLoopDepth(); int spillLoopDepth = allocator.blockForId(spillPos).getLoopDepth(); if (defLoopDepth <= spillLoopDepth) { if (LinearScan.Options.LIROptLSRAOptimizeSpillPosition.getValue(allocator.getOptions())) { // the interval is spilled more then once interval.setSpillState(SpillState.SpillInDominator); } else { // It is better to store it to memory at the definition. interval.setSpillState(SpillState.StoreAtDefinition); } } break; } case SpillInDominator: case StoreAtDefinition: case StartInMemory: case NoOptimization: case NoDefinitionFound: // nothing to do break; default: throw GraalError.shouldNotReachHere("other states not allowed at this time"); } }
This is called for every interval that is assigned to a stack slot.
/** * This is called for every interval that is assigned to a stack slot. */
protected void handleSpillSlot(Interval interval) { assert interval.location() != null && (interval.canMaterialize() || isStackSlotValue(interval.location())) : "interval not assigned to a stack slot " + interval; // Do nothing. Stack slots are not processed in this implementation. } void splitStackInterval(Interval interval) { int minSplitPos = currentPosition + 1; int maxSplitPos = Math.min(interval.firstUsage(RegisterPriority.ShouldHaveRegister), interval.to()); splitBeforeUsage(interval, minSplitPos, maxSplitPos); } void splitWhenPartialRegisterAvailable(Interval interval, int registerAvailableUntil) { int minSplitPos = Math.max(interval.previousUsage(RegisterPriority.ShouldHaveRegister, registerAvailableUntil), interval.from() + 1); splitBeforeUsage(interval, minSplitPos, registerAvailableUntil); } void splitAndSpillInterval(Interval interval) { assert interval.state == State.Active || interval.state == State.Inactive : "other states not allowed"; int currentPos = currentPosition; if (interval.state == State.Inactive) { // the interval is currently inactive, so no spill slot is needed for now. // when the split part is activated, the interval has a new chance to get a register, // so in the best case no stack slot is necessary assert interval.hasHoleBetween(currentPos - 1, currentPos + 1) : "interval can not be inactive otherwise"; splitBeforeUsage(interval, currentPos + 1, currentPos + 1); } else { // search the position where the interval must have a register and split // at the optimal position before. // The new created part is added to the unhandled list and will get a register // when it is activated int minSplitPos = currentPos + 1; int maxSplitPos = Math.min(interval.nextUsage(RegisterPriority.MustHaveRegister, minSplitPos), interval.to()); splitBeforeUsage(interval, minSplitPos, maxSplitPos); assert interval.nextUsage(RegisterPriority.MustHaveRegister, currentPos) == Integer.MAX_VALUE : "the remaining part is spilled to stack and therefore has no register"; splitForSpilling(interval); } } @SuppressWarnings("try") boolean allocFreeRegister(Interval interval) { DebugContext debug = allocator.getDebug(); try (Indent indent = debug.logAndIndent("trying to find free register for %s", interval)) { initUseLists(true); freeExcludeActiveFixed(); freeExcludeActiveAny(); freeCollectInactiveFixed(interval); freeCollectInactiveAny(interval); // freeCollectUnhandled(fixedKind, cur); assert unhandledLists.get(RegisterBinding.Fixed).isEndMarker() : "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"; // usePos contains the start of the next interval that has this register assigned // (either as a fixed register or a normal allocated register in the past) // only intervals overlapping with cur are processed, non-overlapping invervals can be // ignored safely if (debug.isLogEnabled()) { // Enable this logging to see all register states try (Indent indent2 = debug.logAndIndent("state of registers:")) { for (Register register : availableRegs) { int i = register.number; debug.log("reg %d: usePos: %d", register.number, usePos[i]); } } } Register hint = null; Interval locationHint = interval.locationHint(true); if (locationHint != null && locationHint.location() != null && isRegister(locationHint.location())) { hint = asRegister(locationHint.location()); if (debug.isLogEnabled()) { debug.log("hint register %d from interval %s", hint.number, locationHint); } } assert interval.location() == null : "register already assigned to interval"; // the register must be free at least until this position int regNeededUntil = interval.from() + 1; int intervalTo = interval.to(); boolean needSplit = false; int splitPos = -1; Register reg = null; Register minFullReg = null; Register maxPartialReg = null; for (Register availableReg : availableRegs) { int number = availableReg.number; if (usePos[number] >= intervalTo) { // this register is free for the full interval if (minFullReg == null || availableReg.equals(hint) || (usePos[number] < usePos[minFullReg.number] && !minFullReg.equals(hint))) { minFullReg = availableReg; } } else if (usePos[number] > regNeededUntil) { // this register is at least free until regNeededUntil if (maxPartialReg == null || availableReg.equals(hint) || (usePos[number] > usePos[maxPartialReg.number] && !maxPartialReg.equals(hint))) { maxPartialReg = availableReg; } } } if (minFullReg != null) { reg = minFullReg; } else if (maxPartialReg != null) { needSplit = true; reg = maxPartialReg; } else { return false; } splitPos = usePos[reg.number]; interval.assignLocation(reg.asValue(interval.kind())); if (debug.isLogEnabled()) { debug.log("selected register %d", reg.number); } assert splitPos > 0 : "invalid splitPos"; if (needSplit) { // register not available for full interval, so split it splitWhenPartialRegisterAvailable(interval, splitPos); } // only return true if interval is completely assigned return true; } } void splitAndSpillIntersectingIntervals(Register reg) { assert reg != null : "no register assigned"; for (int i = 0; i < spillIntervals[reg.number].size(); i++) { Interval interval = spillIntervals[reg.number].get(i); removeFromList(interval); splitAndSpillInterval(interval); } } // Split an Interval and spill it to memory so that cur can be placed in a register @SuppressWarnings("try") void allocLockedRegister(Interval interval) { DebugContext debug = allocator.getDebug(); try (Indent indent = debug.logAndIndent("alloc locked register: need to split and spill to get register for %s", interval)) { // the register must be free at least until this position int firstUsage = interval.firstUsage(RegisterPriority.MustHaveRegister); int firstShouldHaveUsage = interval.firstUsage(RegisterPriority.ShouldHaveRegister); int regNeededUntil = Math.min(firstUsage, interval.from() + 1); int intervalTo = interval.to(); assert regNeededUntil >= 0 && regNeededUntil < Integer.MAX_VALUE : "interval has no use"; Register reg; Register ignore; /* * In the common case we don't spill registers that have _any_ use position that is * closer than the next use of the current interval, but if we can't spill the current * interval we weaken this strategy and also allow spilling of intervals that have a * non-mandatory requirements (no MustHaveRegister use position). */ for (RegisterPriority registerPriority = RegisterPriority.LiveAtLoopEnd; true; registerPriority = RegisterPriority.MustHaveRegister) { // collect current usage of registers initUseLists(false); spillExcludeActiveFixed(); // spillBlockUnhandledFixed(cur); assert unhandledLists.get(RegisterBinding.Fixed).isEndMarker() : "must not have unhandled fixed intervals because all fixed intervals have a use at position 0"; spillBlockInactiveFixed(interval); spillCollectActiveAny(registerPriority); spillCollectInactiveAny(interval); if (debug.isLogEnabled()) { printRegisterState(); } reg = null; ignore = interval.location() != null && isRegister(interval.location()) ? asRegister(interval.location()) : null; for (Register availableReg : availableRegs) { int number = availableReg.number; if (availableReg.equals(ignore)) { // this register must be ignored } else if (usePos[number] > regNeededUntil) { if (reg == null || (usePos[number] > usePos[reg.number])) { reg = availableReg; } } } int regUsePos = (reg == null ? 0 : usePos[reg.number]); if (regUsePos <= firstShouldHaveUsage) { if (debug.isLogEnabled()) { debug.log("able to spill current interval. firstUsage(register): %d, usePos: %d", firstUsage, regUsePos); } if (firstUsage <= interval.from() + 1) { if (registerPriority.equals(RegisterPriority.LiveAtLoopEnd)) { /* * Tool of last resort: we can not spill the current interval so we try * to spill an active interval that has a usage but do not require a * register. */ debug.log("retry with register priority must have register"); continue; } String description = generateOutOfRegErrorMsg(interval, firstUsage, availableRegs); /* * assign a reasonable register and do a bailout in product mode to avoid * errors */ allocator.assignSpillSlot(interval); debug.dump(DebugContext.INFO_LEVEL, allocator.getLIR(), description); allocator.printIntervals(description); throw new OutOfRegistersException("LinearScan: no register found", description); } splitAndSpillInterval(interval); return; } break; } boolean needSplit = blockPos[reg.number] <= intervalTo; int splitPos = blockPos[reg.number]; if (debug.isLogEnabled()) { debug.log("decided to use register %d", reg.number); } assert splitPos > 0 : "invalid splitPos"; assert needSplit || splitPos > interval.from() : "splitting interval at from"; interval.assignLocation(reg.asValue(interval.kind())); if (needSplit) { // register not available for full interval : so split it splitWhenPartialRegisterAvailable(interval, splitPos); } // perform splitting and spilling for all affected intervals splitAndSpillIntersectingIntervals(reg); return; } } private static String generateOutOfRegErrorMsg(Interval interval, int firstUsage, Register[] availableRegs) { return "Cannot spill interval (" + interval + ") that is used in first instruction (possible reason: no register found) firstUsage=" + firstUsage + ", interval.from()=" + interval.from() + "; already used candidates: " + Arrays.toString(availableRegs); } @SuppressWarnings("try") void printRegisterState() { DebugContext debug = allocator.getDebug(); try (Indent indent2 = debug.logAndIndent("state of registers:")) { for (Register reg : availableRegs) { int i = reg.number; try (Indent indent3 = debug.logAndIndent("reg %d: usePos: %d, blockPos: %d, intervals: ", i, usePos[i], blockPos[i])) { for (int j = 0; j < spillIntervals[i].size(); j++) { debug.log("%s ", spillIntervals[i].get(j)); } } } } } boolean noAllocationPossible(Interval interval) { if (allocator.callKillsRegisters()) { // fast calculation of intervals that can never get a register because the // the next instruction is a call that blocks all registers // Note: this only works if a call kills all registers // check if this interval is the result of a split operation // (an interval got a register until this position) int pos = interval.from(); if (isOdd(pos)) { // the current instruction is a call that blocks all registers if (pos < allocator.maxOpId() && allocator.hasCall(pos + 1) && interval.to() > pos + 1) { DebugContext debug = allocator.getDebug(); if (debug.isLogEnabled()) { debug.log("free register cannot be available because all registers blocked by following call"); } // safety check that there is really no register available assert !allocFreeRegister(interval) : "found a register for this interval"; return true; } } } return false; } void initVarsForAlloc(Interval interval) { AllocatableRegisters allocatableRegisters = allocator.getRegisterAllocationConfig().getAllocatableRegisters(interval.kind().getPlatformKind()); availableRegs = allocatableRegisters.allocatableRegisters; minReg = allocatableRegisters.minRegisterNumber; maxReg = allocatableRegisters.maxRegisterNumber; } static boolean isMove(LIRInstruction op, Interval from, Interval to) { if (ValueMoveOp.isValueMoveOp(op)) { ValueMoveOp move = ValueMoveOp.asValueMoveOp(op); if (isVariable(move.getInput()) && isVariable(move.getResult())) { return move.getInput() != null && move.getInput().equals(from.operand) && move.getResult() != null && move.getResult().equals(to.operand); } } return false; } // optimization (especially for phi functions of nested loops): // assign same spill slot to non-intersecting intervals void combineSpilledIntervals(Interval interval) { if (interval.isSplitChild()) { // optimization is only suitable for split parents return; } Interval registerHint = interval.locationHint(false); if (registerHint == null) { // cur is not the target of a move : otherwise registerHint would be set return; } assert registerHint.isSplitParent() : "register hint must be split parent"; if (interval.spillState() != SpillState.NoOptimization || registerHint.spillState() != SpillState.NoOptimization) { // combining the stack slots for intervals where spill move optimization is applied // is not benefitial and would cause problems return; } int beginPos = interval.from(); int endPos = interval.to(); if (endPos > allocator.maxOpId() || isOdd(beginPos) || isOdd(endPos)) { // safety check that lirOpWithId is allowed return; } if (!isMove(allocator.instructionForId(beginPos), registerHint, interval) || !isMove(allocator.instructionForId(endPos), interval, registerHint)) { // cur and registerHint are not connected with two moves return; } Interval beginHint = registerHint.getSplitChildAtOpId(beginPos, LIRInstruction.OperandMode.USE, allocator); Interval endHint = registerHint.getSplitChildAtOpId(endPos, LIRInstruction.OperandMode.DEF, allocator); if (beginHint == endHint || beginHint.to() != beginPos || endHint.from() != endPos) { // registerHint must be split : otherwise the re-writing of use positions does not work return; } assert beginHint.location() != null : "must have register assigned"; assert endHint.location() == null : "must not have register assigned"; assert interval.firstUsage(RegisterPriority.MustHaveRegister) == beginPos : "must have use position at begin of interval because of move"; assert endHint.firstUsage(RegisterPriority.MustHaveRegister) == endPos : "must have use position at begin of interval because of move"; if (isRegister(beginHint.location())) { // registerHint is not spilled at beginPos : so it would not be benefitial to // immediately spill cur return; } assert registerHint.spillSlot() != null : "must be set when part of interval was spilled"; // modify intervals such that cur gets the same stack slot as registerHint // delete use positions to prevent the intervals to get a register at beginning interval.setSpillSlot(registerHint.spillSlot()); interval.removeFirstUsePos(); endHint.removeFirstUsePos(); } // allocate a physical register or memory location to an interval @Override @SuppressWarnings("try") protected boolean activateCurrent(Interval interval) { boolean result = true; DebugContext debug = allocator.getDebug(); try (Indent indent = debug.logAndIndent("activating interval %s, splitParent: %d", interval, interval.splitParent().operandNumber)) { final Value operand = interval.operand; if (interval.location() != null && isStackSlotValue(interval.location())) { // activating an interval that has a stack slot assigned . split it at first use // position // used for method parameters if (debug.isLogEnabled()) { debug.log("interval has spill slot assigned (method parameter) . split it before first use"); } splitStackInterval(interval); result = false; } else { if (interval.location() == null) { // interval has not assigned register . normal allocation // (this is the normal case for most intervals) if (debug.isLogEnabled()) { debug.log("normal allocation of register"); } // assign same spill slot to non-intersecting intervals combineSpilledIntervals(interval); initVarsForAlloc(interval); if (noAllocationPossible(interval) || !allocFreeRegister(interval)) { // no empty register available. // split and spill another interval so that this interval gets a register allocLockedRegister(interval); } // spilled intervals need not be move to active-list if (!isRegister(interval.location())) { result = false; } } } // load spilled values that become active from stack slot to register if (interval.insertMoveWhenActivated()) { assert interval.isSplitChild(); assert interval.currentSplitChild() != null; assert !interval.currentSplitChild().operand.equals(operand) : "cannot insert move between same interval"; if (debug.isLogEnabled()) { debug.log("Inserting move from interval %d to %d because insertMoveWhenActivated is set", interval.currentSplitChild().operandNumber, interval.operandNumber); } insertMove(interval.from(), interval.currentSplitChild(), interval); } interval.makeCurrentSplitChild(); } return result; // true = interval is moved to active list } public void finishAllocation() { // must be called when all intervals are allocated moveResolver.resolveAndAppendMoves(); } }