/*
* Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
import jdk.internal.HotSpotIntrinsicCandidate;
The Short
class wraps a value of primitive type
short
in an object. An object of type Short
contains a single field whose type is short
. In addition, this class provides several methods for converting a short
to a String
and a String
to a short
, as well as other constants and methods useful when dealing with a short
.
Author: Nakul Saraiya, Joseph D. Darcy See Also: Since: 1.1
/**
* The {@code Short} class wraps a value of primitive type {@code
* short} in an object. An object of type {@code Short} contains a
* single field whose type is {@code short}.
*
* <p>In addition, this class provides several methods for converting
* a {@code short} to a {@code String} and a {@code String} to a
* {@code short}, as well as other constants and methods useful when
* dealing with a {@code short}.
*
* @author Nakul Saraiya
* @author Joseph D. Darcy
* @see java.lang.Number
* @since 1.1
*/
public final class Short extends Number implements Comparable<Short> {
A constant holding the minimum value a short
can have, -215.
/**
* A constant holding the minimum value a {@code short} can
* have, -2<sup>15</sup>.
*/
public static final short MIN_VALUE = -32768;
A constant holding the maximum value a short
can have, 215-1.
/**
* A constant holding the maximum value a {@code short} can
* have, 2<sup>15</sup>-1.
*/
public static final short MAX_VALUE = 32767;
The Class
instance representing the primitive type short
. /**
* The {@code Class} instance representing the primitive type
* {@code short}.
*/
@SuppressWarnings("unchecked")
public static final Class<Short> TYPE = (Class<Short>) Class.getPrimitiveClass("short");
Returns a new String
object representing the specified short
. The radix is assumed to be 10. Params: - s – the
short
to be converted
See Also: Returns: the string representation of the specified short
/**
* Returns a new {@code String} object representing the
* specified {@code short}. The radix is assumed to be 10.
*
* @param s the {@code short} to be converted
* @return the string representation of the specified {@code short}
* @see java.lang.Integer#toString(int)
*/
public static String toString(short s) {
return Integer.toString((int)s, 10);
}
Parses the string argument as a signed short
in the radix specified by the second argument. The characters in the string must all be digits, of the specified radix (as determined by whether Character.digit(char, int)
returns a nonnegative value) except that the first character may be an ASCII minus sign '-'
('\u005Cu002D'
) to indicate a negative value or an ASCII plus sign '+'
('\u005Cu002B'
) to indicate a positive value. The resulting short
value is returned. An exception of type NumberFormatException
is thrown if any of the following situations occurs:
- The first argument is
null
or is a string of length zero. - The radix is either smaller than
Character.MIN_RADIX
or larger than Character.MAX_RADIX
. - Any character of the string is not a digit of the specified radix, except that the first character may be a minus sign
'-'
('\u005Cu002D'
) or plus sign '+'
('\u005Cu002B'
) provided that the string is longer than length 1. - The value represented by the string is not a value of type
short
.
Params: - s – the
String
containing the short
representation to be parsed - radix – the radix to be used while parsing
s
Throws: - NumberFormatException – If the
String
does not contain a parsable short
.
Returns: the short
represented by the string argument in the specified radix.
/**
* Parses the string argument as a signed {@code short} in the
* radix specified by the second argument. The characters in the
* string must all be digits, of the specified radix (as
* determined by whether {@link java.lang.Character#digit(char,
* int)} returns a nonnegative value) except that the first
* character may be an ASCII minus sign {@code '-'}
* ({@code '\u005Cu002D'}) to indicate a negative value or an
* ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
* indicate a positive value. The resulting {@code short} value
* is returned.
*
* <p>An exception of type {@code NumberFormatException} is
* thrown if any of the following situations occurs:
* <ul>
* <li> The first argument is {@code null} or is a string of
* length zero.
*
* <li> The radix is either smaller than {@link
* java.lang.Character#MIN_RADIX} or larger than {@link
* java.lang.Character#MAX_RADIX}.
*
* <li> Any character of the string is not a digit of the
* specified radix, except that the first character may be a minus
* sign {@code '-'} ({@code '\u005Cu002D'}) or plus sign
* {@code '+'} ({@code '\u005Cu002B'}) provided that the
* string is longer than length 1.
*
* <li> The value represented by the string is not a value of type
* {@code short}.
* </ul>
*
* @param s the {@code String} containing the
* {@code short} representation to be parsed
* @param radix the radix to be used while parsing {@code s}
* @return the {@code short} represented by the string
* argument in the specified radix.
* @throws NumberFormatException If the {@code String}
* does not contain a parsable {@code short}.
*/
public static short parseShort(String s, int radix)
throws NumberFormatException {
int i = Integer.parseInt(s, radix);
if (i < MIN_VALUE || i > MAX_VALUE)
throw new NumberFormatException(
"Value out of range. Value:\"" + s + "\" Radix:" + radix);
return (short)i;
}
Parses the string argument as a signed decimal
short
. The characters in the string must all be decimal digits, except that the first character may be an ASCII minus sign '-'
('\u005Cu002D'
) to indicate a negative value or an ASCII plus sign '+'
('\u005Cu002B'
) to indicate a positive value. The resulting short
value is returned, exactly as if the argument and the radix 10 were given as arguments to the parseShort(String, int)
method. Params: - s – a
String
containing the short
representation to be parsed
Throws: - NumberFormatException – If the string does not contain a parsable
short
.
Returns: the short
value represented by the argument in decimal.
/**
* Parses the string argument as a signed decimal {@code
* short}. The characters in the string must all be decimal
* digits, except that the first character may be an ASCII minus
* sign {@code '-'} ({@code '\u005Cu002D'}) to indicate a
* negative value or an ASCII plus sign {@code '+'}
* ({@code '\u005Cu002B'}) to indicate a positive value. The
* resulting {@code short} value is returned, exactly as if the
* argument and the radix 10 were given as arguments to the {@link
* #parseShort(java.lang.String, int)} method.
*
* @param s a {@code String} containing the {@code short}
* representation to be parsed
* @return the {@code short} value represented by the
* argument in decimal.
* @throws NumberFormatException If the string does not
* contain a parsable {@code short}.
*/
public static short parseShort(String s) throws NumberFormatException {
return parseShort(s, 10);
}
Returns a Short
object holding the value extracted from the specified String
when parsed with the radix given by the second argument. The first argument is interpreted as representing a signed short
in the radix specified by the second argument, exactly as if the argument were given to the parseShort(String, int)
method. The result is a Short
object that represents the short
value specified by the string. In other words, this method returns a Short
object equal to the value of:
new Short(Short.parseShort(s, radix))
Params: - s – the string to be parsed
- radix – the radix to be used in interpreting
s
Throws: - NumberFormatException – If the
String
does not contain a parsable short
.
Returns: a Short
object holding the value represented by the string argument in the specified radix.
/**
* Returns a {@code Short} object holding the value
* extracted from the specified {@code String} when parsed
* with the radix given by the second argument. The first argument
* is interpreted as representing a signed {@code short} in
* the radix specified by the second argument, exactly as if the
* argument were given to the {@link #parseShort(java.lang.String,
* int)} method. The result is a {@code Short} object that
* represents the {@code short} value specified by the string.
*
* <p>In other words, this method returns a {@code Short} object
* equal to the value of:
*
* <blockquote>
* {@code new Short(Short.parseShort(s, radix))}
* </blockquote>
*
* @param s the string to be parsed
* @param radix the radix to be used in interpreting {@code s}
* @return a {@code Short} object holding the value
* represented by the string argument in the
* specified radix.
* @throws NumberFormatException If the {@code String} does
* not contain a parsable {@code short}.
*/
public static Short valueOf(String s, int radix)
throws NumberFormatException {
return valueOf(parseShort(s, radix));
}
Returns a Short
object holding the value given by the specified String
. The argument is interpreted as representing a signed decimal short
, exactly as if the argument were given to the parseShort(String)
method. The result is a Short
object that represents the short
value specified by the string. In other words, this method returns a Short
object equal to the value of:
new Short(Short.parseShort(s))
Params: - s – the string to be parsed
Throws: - NumberFormatException – If the
String
does not contain a parsable short
.
Returns: a Short
object holding the value represented by the string argument
/**
* Returns a {@code Short} object holding the
* value given by the specified {@code String}. The argument
* is interpreted as representing a signed decimal
* {@code short}, exactly as if the argument were given to
* the {@link #parseShort(java.lang.String)} method. The result is
* a {@code Short} object that represents the
* {@code short} value specified by the string.
*
* <p>In other words, this method returns a {@code Short} object
* equal to the value of:
*
* <blockquote>
* {@code new Short(Short.parseShort(s))}
* </blockquote>
*
* @param s the string to be parsed
* @return a {@code Short} object holding the value
* represented by the string argument
* @throws NumberFormatException If the {@code String} does
* not contain a parsable {@code short}.
*/
public static Short valueOf(String s) throws NumberFormatException {
return valueOf(s, 10);
}
private static class ShortCache {
private ShortCache(){}
static final Short cache[] = new Short[-(-128) + 127 + 1];
static {
for(int i = 0; i < cache.length; i++)
cache[i] = new Short((short)(i - 128));
}
}
Returns a Short
instance representing the specified short
value. If a new Short
instance is not required, this method should generally be used in preference to the constructor Short(short)
, as this method is likely to yield significantly better space and time performance by caching frequently requested values. This method will always cache values in the range -128 to 127, inclusive, and may cache other values outside of this range. Params: - s – a short value.
Returns: a Short
instance representing s
. Since: 1.5
/**
* Returns a {@code Short} instance representing the specified
* {@code short} value.
* If a new {@code Short} instance is not required, this method
* should generally be used in preference to the constructor
* {@link #Short(short)}, as this method is likely to yield
* significantly better space and time performance by caching
* frequently requested values.
*
* This method will always cache values in the range -128 to 127,
* inclusive, and may cache other values outside of this range.
*
* @param s a short value.
* @return a {@code Short} instance representing {@code s}.
* @since 1.5
*/
@HotSpotIntrinsicCandidate
public static Short valueOf(short s) {
final int offset = 128;
int sAsInt = s;
if (sAsInt >= -128 && sAsInt <= 127) { // must cache
return ShortCache.cache[sAsInt + offset];
}
return new Short(s);
}
Decodes a String
into a Short
. Accepts decimal, hexadecimal, and octal numbers given by the following grammar:
- DecodableString:
- Signopt DecimalNumeral
- Signopt
0x
HexDigits
- Signopt
0X
HexDigits
- Signopt
#
HexDigits
- Signopt
0
OctalDigits
- Sign:
-
+
DecimalNumeral, HexDigits, and OctalDigits
are as defined in section 3.10.1 of
The Java™ Language Specification,
except that underscores are not accepted between digits.
The sequence of characters following an optional sign and/or radix specifier ("0x
", "0X
", "#
", or leading zero) is parsed as by the
Short.parseShort
method with the indicated radix (10, 16, or 8). This sequence of characters must represent a positive value or a NumberFormatException
will be thrown. The result is negated if first character of the specified
String
is the minus sign. No whitespace characters are permitted in the String
.
Params: - nm – the
String
to decode.
Throws: - NumberFormatException – if the
String
does not contain a parsable short
.
See Also: Returns: a Short
object holding the short
value represented by nm
/**
* Decodes a {@code String} into a {@code Short}.
* Accepts decimal, hexadecimal, and octal numbers given by
* the following grammar:
*
* <blockquote>
* <dl>
* <dt><i>DecodableString:</i>
* <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
* <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
* <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
* <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
* <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
*
* <dt><i>Sign:</i>
* <dd>{@code -}
* <dd>{@code +}
* </dl>
* </blockquote>
*
* <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
* are as defined in section 3.10.1 of
* <cite>The Java™ Language Specification</cite>,
* except that underscores are not accepted between digits.
*
* <p>The sequence of characters following an optional
* sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
* "{@code #}", or leading zero) is parsed as by the {@code
* Short.parseShort} method with the indicated radix (10, 16, or
* 8). This sequence of characters must represent a positive
* value or a {@link NumberFormatException} will be thrown. The
* result is negated if first character of the specified {@code
* String} is the minus sign. No whitespace characters are
* permitted in the {@code String}.
*
* @param nm the {@code String} to decode.
* @return a {@code Short} object holding the {@code short}
* value represented by {@code nm}
* @throws NumberFormatException if the {@code String} does not
* contain a parsable {@code short}.
* @see java.lang.Short#parseShort(java.lang.String, int)
*/
public static Short decode(String nm) throws NumberFormatException {
int i = Integer.decode(nm);
if (i < MIN_VALUE || i > MAX_VALUE)
throw new NumberFormatException(
"Value " + i + " out of range from input " + nm);
return valueOf((short)i);
}
The value of the Short
. @serial
/**
* The value of the {@code Short}.
*
* @serial
*/
private final short value;
Constructs a newly allocated Short
object that represents the specified short
value. Params: - value – the value to be represented by the
Short
.
Deprecated: It is rarely appropriate to use this constructor. The static factory valueOf(short)
is generally a better choice, as it is likely to yield significantly better space and time performance.
/**
* Constructs a newly allocated {@code Short} object that
* represents the specified {@code short} value.
*
* @param value the value to be represented by the
* {@code Short}.
*
* @deprecated
* It is rarely appropriate to use this constructor. The static factory
* {@link #valueOf(short)} is generally a better choice, as it is
* likely to yield significantly better space and time performance.
*/
@Deprecated(since="9")
public Short(short value) {
this.value = value;
}
Constructs a newly allocated Short
object that represents the short
value indicated by the String
parameter. The string is converted to a short
value in exactly the manner used by the parseShort
method for radix 10. Params: - s – the
String
to be converted to a Short
Throws: - NumberFormatException – If the
String
does not contain a parsable short
.
Deprecated: It is rarely appropriate to use this constructor. Use parseShort(String)
to convert a string to a short
primitive, or use valueOf(String)
to convert a string to a Short
object.
/**
* Constructs a newly allocated {@code Short} object that
* represents the {@code short} value indicated by the
* {@code String} parameter. The string is converted to a
* {@code short} value in exactly the manner used by the
* {@code parseShort} method for radix 10.
*
* @param s the {@code String} to be converted to a
* {@code Short}
* @throws NumberFormatException If the {@code String}
* does not contain a parsable {@code short}.
*
* @deprecated
* It is rarely appropriate to use this constructor.
* Use {@link #parseShort(String)} to convert a string to a
* {@code short} primitive, or use {@link #valueOf(String)}
* to convert a string to a {@code Short} object.
*/
@Deprecated(since="9")
public Short(String s) throws NumberFormatException {
this.value = parseShort(s, 10);
}
Returns the value of this Short
as a byte
after a narrowing primitive conversion. @jls 5.1.3 Narrowing Primitive Conversions
/**
* Returns the value of this {@code Short} as a {@code byte} after
* a narrowing primitive conversion.
* @jls 5.1.3 Narrowing Primitive Conversions
*/
public byte byteValue() {
return (byte)value;
}
Returns the value of this Short
as a short
. /**
* Returns the value of this {@code Short} as a
* {@code short}.
*/
@HotSpotIntrinsicCandidate
public short shortValue() {
return value;
}
Returns the value of this Short
as an int
after a widening primitive conversion. @jls 5.1.2 Widening Primitive Conversions
/**
* Returns the value of this {@code Short} as an {@code int} after
* a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public int intValue() {
return (int)value;
}
Returns the value of this Short
as a long
after a widening primitive conversion. @jls 5.1.2 Widening Primitive Conversions
/**
* Returns the value of this {@code Short} as a {@code long} after
* a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public long longValue() {
return (long)value;
}
Returns the value of this Short
as a float
after a widening primitive conversion. @jls 5.1.2 Widening Primitive Conversions
/**
* Returns the value of this {@code Short} as a {@code float}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public float floatValue() {
return (float)value;
}
Returns the value of this Short
as a double
after a widening primitive conversion. @jls 5.1.2 Widening Primitive Conversions
/**
* Returns the value of this {@code Short} as a {@code double}
* after a widening primitive conversion.
* @jls 5.1.2 Widening Primitive Conversions
*/
public double doubleValue() {
return (double)value;
}
Returns a String
object representing this Short
's value. The value is converted to signed decimal representation and returned as a string, exactly as if the short
value were given as an argument to the toString(short)
method. Returns: a string representation of the value of this object in
base 10.
/**
* Returns a {@code String} object representing this
* {@code Short}'s value. The value is converted to signed
* decimal representation and returned as a string, exactly as if
* the {@code short} value were given as an argument to the
* {@link java.lang.Short#toString(short)} method.
*
* @return a string representation of the value of this object in
* base 10.
*/
public String toString() {
return Integer.toString((int)value);
}
Returns a hash code for this Short
; equal to the result of invoking intValue()
. Returns: a hash code value for this Short
/**
* Returns a hash code for this {@code Short}; equal to the result
* of invoking {@code intValue()}.
*
* @return a hash code value for this {@code Short}
*/
@Override
public int hashCode() {
return Short.hashCode(value);
}
Returns a hash code for a short
value; compatible with Short.hashCode()
. Params: - value – the value to hash
Returns: a hash code value for a short
value. Since: 1.8
/**
* Returns a hash code for a {@code short} value; compatible with
* {@code Short.hashCode()}.
*
* @param value the value to hash
* @return a hash code value for a {@code short} value.
* @since 1.8
*/
public static int hashCode(short value) {
return (int)value;
}
Compares this object to the specified object. The result is true
if and only if the argument is not null
and is a Short
object that contains the same short
value as this object. Params: - obj – the object to compare with
Returns: true
if the objects are the same; false
otherwise.
/**
* Compares this object to the specified object. The result is
* {@code true} if and only if the argument is not
* {@code null} and is a {@code Short} object that
* contains the same {@code short} value as this object.
*
* @param obj the object to compare with
* @return {@code true} if the objects are the same;
* {@code false} otherwise.
*/
public boolean equals(Object obj) {
if (obj instanceof Short) {
return value == ((Short)obj).shortValue();
}
return false;
}
Compares two Short
objects numerically. Params: - anotherShort – the
Short
to be compared.
Returns: the value 0
if this Short
is equal to the argument Short
; a value less than 0
if this Short
is numerically less than the argument Short
; and a value greater than 0
if this Short
is numerically greater than the argument Short
(signed comparison). Since: 1.2
/**
* Compares two {@code Short} objects numerically.
*
* @param anotherShort the {@code Short} to be compared.
* @return the value {@code 0} if this {@code Short} is
* equal to the argument {@code Short}; a value less than
* {@code 0} if this {@code Short} is numerically less
* than the argument {@code Short}; and a value greater than
* {@code 0} if this {@code Short} is numerically
* greater than the argument {@code Short} (signed
* comparison).
* @since 1.2
*/
public int compareTo(Short anotherShort) {
return compare(this.value, anotherShort.value);
}
Compares two short
values numerically. The value returned is identical to what would be returned by: Short.valueOf(x).compareTo(Short.valueOf(y))
Params: - x – the first
short
to compare - y – the second
short
to compare
Returns: the value 0
if x == y
; a value less than 0
if x < y
; and a value greater than 0
if x > y
Since: 1.7
/**
* Compares two {@code short} values numerically.
* The value returned is identical to what would be returned by:
* <pre>
* Short.valueOf(x).compareTo(Short.valueOf(y))
* </pre>
*
* @param x the first {@code short} to compare
* @param y the second {@code short} to compare
* @return the value {@code 0} if {@code x == y};
* a value less than {@code 0} if {@code x < y}; and
* a value greater than {@code 0} if {@code x > y}
* @since 1.7
*/
public static int compare(short x, short y) {
return x - y;
}
Compares two short
values numerically treating the values as unsigned. Params: - x – the first
short
to compare - y – the second
short
to compare
Returns: the value 0
if x == y
; a value less than 0
if x < y
as unsigned values; and a value greater than 0
if x > y
as unsigned values Since: 9
/**
* Compares two {@code short} values numerically treating the values
* as unsigned.
*
* @param x the first {@code short} to compare
* @param y the second {@code short} to compare
* @return the value {@code 0} if {@code x == y}; a value less
* than {@code 0} if {@code x < y} as unsigned values; and
* a value greater than {@code 0} if {@code x > y} as
* unsigned values
* @since 9
*/
public static int compareUnsigned(short x, short y) {
return Short.toUnsignedInt(x) - Short.toUnsignedInt(y);
}
The number of bits used to represent a short
value in two's complement binary form. Since: 1.5
/**
* The number of bits used to represent a {@code short} value in two's
* complement binary form.
* @since 1.5
*/
public static final int SIZE = 16;
The number of bytes used to represent a short
value in two's complement binary form. Since: 1.8
/**
* The number of bytes used to represent a {@code short} value in two's
* complement binary form.
*
* @since 1.8
*/
public static final int BYTES = SIZE / Byte.SIZE;
Returns the value obtained by reversing the order of the bytes in the two's complement representation of the specified short
value. Params: - i – the value whose bytes are to be reversed
Returns: the value obtained by reversing (or, equivalently, swapping) the bytes in the specified short
value. Since: 1.5
/**
* Returns the value obtained by reversing the order of the bytes in the
* two's complement representation of the specified {@code short} value.
*
* @param i the value whose bytes are to be reversed
* @return the value obtained by reversing (or, equivalently, swapping)
* the bytes in the specified {@code short} value.
* @since 1.5
*/
@HotSpotIntrinsicCandidate
public static short reverseBytes(short i) {
return (short) (((i & 0xFF00) >> 8) | (i << 8));
}
Converts the argument to an int
by an unsigned conversion. In an unsigned conversion to an int
, the high-order 16 bits of the int
are zero and the low-order 16 bits are equal to the bits of the short
argument. Consequently, zero and positive short
values are mapped to a numerically equal int
value and negative
short
values are mapped to an int
value equal to the input plus 216.
Params: - x – the value to convert to an unsigned
int
Returns: the argument converted to int
by an unsigned conversion Since: 1.8
/**
* Converts the argument to an {@code int} by an unsigned
* conversion. In an unsigned conversion to an {@code int}, the
* high-order 16 bits of the {@code int} are zero and the
* low-order 16 bits are equal to the bits of the {@code short} argument.
*
* Consequently, zero and positive {@code short} values are mapped
* to a numerically equal {@code int} value and negative {@code
* short} values are mapped to an {@code int} value equal to the
* input plus 2<sup>16</sup>.
*
* @param x the value to convert to an unsigned {@code int}
* @return the argument converted to {@code int} by an unsigned
* conversion
* @since 1.8
*/
public static int toUnsignedInt(short x) {
return ((int) x) & 0xffff;
}
Converts the argument to a long
by an unsigned conversion. In an unsigned conversion to a long
, the high-order 48 bits of the long
are zero and the low-order 16 bits are equal to the bits of the short
argument. Consequently, zero and positive short
values are mapped to a numerically equal long
value and negative
short
values are mapped to a long
value equal to the input plus 216.
Params: - x – the value to convert to an unsigned
long
Returns: the argument converted to long
by an unsigned conversion Since: 1.8
/**
* Converts the argument to a {@code long} by an unsigned
* conversion. In an unsigned conversion to a {@code long}, the
* high-order 48 bits of the {@code long} are zero and the
* low-order 16 bits are equal to the bits of the {@code short} argument.
*
* Consequently, zero and positive {@code short} values are mapped
* to a numerically equal {@code long} value and negative {@code
* short} values are mapped to a {@code long} value equal to the
* input plus 2<sup>16</sup>.
*
* @param x the value to convert to an unsigned {@code long}
* @return the argument converted to {@code long} by an unsigned
* conversion
* @since 1.8
*/
public static long toUnsignedLong(short x) {
return ((long) x) & 0xffffL;
}
use serialVersionUID from JDK 1.1. for interoperability /** use serialVersionUID from JDK 1.1. for interoperability */
private static final long serialVersionUID = 7515723908773894738L;
}