/*
 * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* $Id: Rijndael.java,v 1.6 2000/02/10 01:31:41 gelderen Exp $
 *
 * Copyright (C) 1995-2000 The Cryptix Foundation Limited.
 * All rights reserved.
 *
 * Use, modification, copying and distribution of this softwareas is subject
 * the terms and conditions of the Cryptix General Licence. You should have
 * received a copy of the Cryptix General Licence along with this library;
 * if not, you can download a copy from http://www.cryptix.org/ .
 */

package com.sun.crypto.provider;

import java.security.InvalidKeyException;
import java.security.MessageDigest;
import java.util.Arrays;
import java.util.Objects;

import jdk.internal.HotSpotIntrinsicCandidate;

Rijndael --pronounced Reindaal-- is a symmetric cipher with a 128-bit block size and variable key-size (128-, 192- and 256-bit).

Rijndael was designed by Vincent Rijmen and Joan Daemen.

/** * Rijndael --pronounced Reindaal-- is a symmetric cipher with a 128-bit * block size and variable key-size (128-, 192- and 256-bit). * <p> * Rijndael was designed by <a href="mailto:rijmen@esat.kuleuven.ac.be">Vincent * Rijmen</a> and <a href="mailto:Joan.Daemen@village.uunet.be">Joan Daemen</a>. */
final class AESCrypt extends SymmetricCipher implements AESConstants { private boolean ROUNDS_12 = false; private boolean ROUNDS_14 = false;
Session and Sub keys
/** Session and Sub keys */
private int[][] sessionK = null; private int[] K = null;
Cipher encryption/decryption key
/** Cipher encryption/decryption key */
// skip re-generating Session and Sub keys if the cipher key is // the same private byte[] lastKey = null;
ROUNDS * 4
/** ROUNDS * 4 */
private int limit = 0; AESCrypt() { // empty }
Returns this cipher's block size.
Returns:this cipher's block size
/** * Returns this cipher's block size. * * @return this cipher's block size */
int getBlockSize() { return AES_BLOCK_SIZE; } void init(boolean decrypting, String algorithm, byte[] key) throws InvalidKeyException { if (!algorithm.equalsIgnoreCase("AES") && !algorithm.equalsIgnoreCase("Rijndael")) { throw new InvalidKeyException ("Wrong algorithm: AES or Rijndael required"); } if (!isKeySizeValid(key.length)) { throw new InvalidKeyException("Invalid AES key length: " + key.length + " bytes"); } if (!MessageDigest.isEqual(key, lastKey)) { // re-generate session key 'sessionK' when cipher key changes makeSessionKey(key); lastKey = key.clone(); // save cipher key } // set sub key to the corresponding session Key this.K = sessionK[(decrypting? 1:0)]; }
Expand an int[(ROUNDS+1)][4] into int[(ROUNDS+1)*4]. For decryption round keys, need to rotate right by 4 ints.
Params:
  • kr – The round keys for encryption or decryption.
  • decrypting – True if 'kr' is for decryption and false otherwise.
/** * Expand an int[(ROUNDS+1)][4] into int[(ROUNDS+1)*4]. * For decryption round keys, need to rotate right by 4 ints. * @param kr The round keys for encryption or decryption. * @param decrypting True if 'kr' is for decryption and false otherwise. */
private static final int[] expandToSubKey(int[][] kr, boolean decrypting) { int total = kr.length; int[] expK = new int[total*4]; if (decrypting) { // decrypting, rotate right by 4 ints // i.e. i==0 for(int j=0; j<4; j++) { expK[j] = kr[total-1][j]; } for(int i=1; i<total; i++) { for(int j=0; j<4; j++) { expK[i*4 + j] = kr[i-1][j]; } } } else { // encrypting, straight expansion for(int i=0; i<total; i++) { for(int j=0; j<4; j++) { expK[i*4 + j] = kr[i][j]; } } } return expK; } private static int[] alog = new int[256], log = new int[256]; private static final byte[] S = new byte[256], Si = new byte[256]; private static final int[] T1 = new int[256], T2 = new int[256], T3 = new int[256], T4 = new int[256], T5 = new int[256], T6 = new int[256], T7 = new int[256], T8 = new int[256]; private static final int[] U1 = new int[256], U2 = new int[256], U3 = new int[256], U4 = new int[256]; private static final byte[] rcon = new byte[30]; // Static code - to intialise S-boxes and T-boxes static { int ROOT = 0x11B; int i, j = 0; // // produce log and alog tables, needed for multiplying in the // field GF(2^m) (generator = 3) // alog[0] = 1; for (i = 1; i < 256; i++) { j = (alog[i-1] << 1) ^ alog[i-1]; if ((j & 0x100) != 0) { j ^= ROOT; } alog[i] = j; } for (i = 1; i < 255; i++) { log[alog[i]] = i; } byte[][] A = new byte[][] { {1, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 1, 1, 1, 0}, {0, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 1, 1}, {1, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 0, 0, 0, 1} }; byte[] B = new byte[] { 0, 1, 1, 0, 0, 0, 1, 1}; // // substitution box based on F^{-1}(x) // int t; byte[][] box = new byte[256][8]; box[1][7] = 1; for (i = 2; i < 256; i++) { j = alog[255 - log[i]]; for (t = 0; t < 8; t++) { box[i][t] = (byte)((j >>> (7 - t)) & 0x01); } } // // affine transform: box[i] <- B + A*box[i] // byte[][] cox = new byte[256][8]; for (i = 0; i < 256; i++) { for (t = 0; t < 8; t++) { cox[i][t] = B[t]; for (j = 0; j < 8; j++) { cox[i][t] ^= A[t][j] * box[i][j]; } } } // // S-boxes and inverse S-boxes // for (i = 0; i < 256; i++) { S[i] = (byte)(cox[i][0] << 7); for (t = 1; t < 8; t++) { S[i] ^= cox[i][t] << (7-t); } Si[S[i] & 0xFF] = (byte) i; } // // T-boxes // byte[][] G = new byte[][] { {2, 1, 1, 3}, {3, 2, 1, 1}, {1, 3, 2, 1}, {1, 1, 3, 2} }; byte[][] AA = new byte[4][8]; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) AA[i][j] = G[i][j]; AA[i][i+4] = 1; } byte pivot, tmp; byte[][] iG = new byte[4][4]; for (i = 0; i < 4; i++) { pivot = AA[i][i]; if (pivot == 0) { t = i + 1; while ((AA[t][i] == 0) && (t < 4)) { t++; } if (t == 4) { throw new RuntimeException("G matrix is not invertible"); } else { for (j = 0; j < 8; j++) { tmp = AA[i][j]; AA[i][j] = AA[t][j]; AA[t][j] = tmp; } pivot = AA[i][i]; } } for (j = 0; j < 8; j++) { if (AA[i][j] != 0) { AA[i][j] = (byte) alog[(255 + log[AA[i][j] & 0xFF] - log[pivot & 0xFF]) % 255]; } } for (t = 0; t < 4; t++) { if (i != t) { for (j = i+1; j < 8; j++) { AA[t][j] ^= mul(AA[i][j], AA[t][i]); } AA[t][i] = 0; } } } for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { iG[i][j] = AA[i][j + 4]; } } int s; for (t = 0; t < 256; t++) { s = S[t]; T1[t] = mul4(s, G[0]); T2[t] = mul4(s, G[1]); T3[t] = mul4(s, G[2]); T4[t] = mul4(s, G[3]); s = Si[t]; T5[t] = mul4(s, iG[0]); T6[t] = mul4(s, iG[1]); T7[t] = mul4(s, iG[2]); T8[t] = mul4(s, iG[3]); U1[t] = mul4(t, iG[0]); U2[t] = mul4(t, iG[1]); U3[t] = mul4(t, iG[2]); U4[t] = mul4(t, iG[3]); } // // round constants // rcon[0] = 1; int r = 1; for (t = 1; t < 30; t++) { r = mul(2, r); rcon[t] = (byte) r; } log = null; alog = null; } // multiply two elements of GF(2^m) private static final int mul (int a, int b) { return (a != 0 && b != 0) ? alog[(log[a & 0xFF] + log[b & 0xFF]) % 255] : 0; } // convenience method used in generating Transposition boxes private static final int mul4 (int a, byte[] b) { if (a == 0) return 0; a = log[a & 0xFF]; int a0 = (b[0] != 0) ? alog[(a + log[b[0] & 0xFF]) % 255] & 0xFF : 0; int a1 = (b[1] != 0) ? alog[(a + log[b[1] & 0xFF]) % 255] & 0xFF : 0; int a2 = (b[2] != 0) ? alog[(a + log[b[2] & 0xFF]) % 255] & 0xFF : 0; int a3 = (b[3] != 0) ? alog[(a + log[b[3] & 0xFF]) % 255] & 0xFF : 0; return a0 << 24 | a1 << 16 | a2 << 8 | a3; } // check if the specified length (in bytes) is a valid keysize for AES static final boolean isKeySizeValid(int len) { for (int i = 0; i < AES_KEYSIZES.length; i++) { if (len == AES_KEYSIZES[i]) { return true; } } return false; }
Encrypt exactly one block of plaintext.
/** * Encrypt exactly one block of plaintext. */
void encryptBlock(byte[] in, int inOffset, byte[] out, int outOffset) { Objects.checkFromIndexSize(inOffset, AES_BLOCK_SIZE, in.length); Objects.checkFromIndexSize(outOffset, AES_BLOCK_SIZE, out.length); implEncryptBlock(in, inOffset, out, outOffset); } // Encryption operation. Possibly replaced with a compiler intrinsic. @HotSpotIntrinsicCandidate private void implEncryptBlock(byte[] in, int inOffset, byte[] out, int outOffset) { int keyOffset = 0; int t0 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; int t1 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; int t2 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; int t3 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; // apply round transforms while( keyOffset < limit ) { int a0, a1, a2; a0 = T1[(t0 >>> 24) ] ^ T2[(t1 >>> 16) & 0xFF] ^ T3[(t2 >>> 8) & 0xFF] ^ T4[(t3 ) & 0xFF] ^ K[keyOffset++]; a1 = T1[(t1 >>> 24) ] ^ T2[(t2 >>> 16) & 0xFF] ^ T3[(t3 >>> 8) & 0xFF] ^ T4[(t0 ) & 0xFF] ^ K[keyOffset++]; a2 = T1[(t2 >>> 24) ] ^ T2[(t3 >>> 16) & 0xFF] ^ T3[(t0 >>> 8) & 0xFF] ^ T4[(t1 ) & 0xFF] ^ K[keyOffset++]; t3 = T1[(t3 >>> 24) ] ^ T2[(t0 >>> 16) & 0xFF] ^ T3[(t1 >>> 8) & 0xFF] ^ T4[(t2 ) & 0xFF] ^ K[keyOffset++]; t0 = a0; t1 = a1; t2 = a2; } // last round is special int tt = K[keyOffset++]; out[outOffset++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(S[(t3 ) & 0xFF] ^ (tt )); tt = K[keyOffset++]; out[outOffset++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(S[(t0 ) & 0xFF] ^ (tt )); tt = K[keyOffset++]; out[outOffset++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset++] = (byte)(S[(t1 ) & 0xFF] ^ (tt )); tt = K[keyOffset++]; out[outOffset++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24)); out[outOffset++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16)); out[outOffset++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8)); out[outOffset ] = (byte)(S[(t2 ) & 0xFF] ^ (tt )); }
Decrypt exactly one block of plaintext.
/** * Decrypt exactly one block of plaintext. */
void decryptBlock(byte[] in, int inOffset, byte[] out, int outOffset) { Objects.checkFromIndexSize(inOffset, AES_BLOCK_SIZE, in.length); Objects.checkFromIndexSize(outOffset, AES_BLOCK_SIZE, out.length); implDecryptBlock(in, inOffset, out, outOffset); } // Decrypt operation. Possibly replaced with a compiler intrinsic. @HotSpotIntrinsicCandidate private void implDecryptBlock(byte[] in, int inOffset, byte[] out, int outOffset) { int keyOffset = 4; int t0 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; int t1 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; int t2 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) ) ^ K[keyOffset++]; int t3 = ((in[inOffset++] ) << 24 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 8 | (in[inOffset ] & 0xFF) ) ^ K[keyOffset++]; int a0, a1, a2; if(ROUNDS_12) { a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++]; t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++]; t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^ T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^ T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++]; if(ROUNDS_14) { a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++]; t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++]; t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^ T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^ T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++]; } } a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++]; t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++]; t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^ T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^ T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++]; a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++]; t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++]; t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^ T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^ T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++]; a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++]; t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++]; t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^ T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^ T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++]; a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t0 = T5[(a0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(a2>>> 8)&0xFF] ^ T8[(a1 )&0xFF] ^ K[keyOffset++]; t1 = T5[(a1>>>24) ] ^ T6[(a0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(a2 )&0xFF] ^ K[keyOffset++]; t2 = T5[(a2>>>24) ] ^ T6[(a1>>>16)&0xFF] ^ T7[(a0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(a2>>>16)&0xFF] ^ T7[(a1>>> 8)&0xFF] ^ T8[(a0 )&0xFF] ^ K[keyOffset++]; a0 = T5[(t0>>>24) ] ^ T6[(t3>>>16)&0xFF] ^ T7[(t2>>> 8)&0xFF] ^ T8[(t1 )&0xFF] ^ K[keyOffset++]; a1 = T5[(t1>>>24) ] ^ T6[(t0>>>16)&0xFF] ^ T7[(t3>>> 8)&0xFF] ^ T8[(t2 )&0xFF] ^ K[keyOffset++]; a2 = T5[(t2>>>24) ] ^ T6[(t1>>>16)&0xFF] ^ T7[(t0>>> 8)&0xFF] ^ T8[(t3 )&0xFF] ^ K[keyOffset++]; t3 = T5[(t3>>>24) ] ^ T6[(t2>>>16)&0xFF] ^ T7[(t1>>> 8)&0xFF] ^ T8[(t0 )&0xFF] ^ K[keyOffset++]; t1 = K[0]; out[outOffset++] = (byte)(Si[(a0 >>> 24) ] ^ (t1 >>> 24)); out[outOffset++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (t1 >>> 16)); out[outOffset++] = (byte)(Si[(a2 >>> 8) & 0xFF] ^ (t1 >>> 8)); out[outOffset++] = (byte)(Si[(a1 ) & 0xFF] ^ (t1 )); t1 = K[1]; out[outOffset++] = (byte)(Si[(a1 >>> 24) ] ^ (t1 >>> 24)); out[outOffset++] = (byte)(Si[(a0 >>> 16) & 0xFF] ^ (t1 >>> 16)); out[outOffset++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (t1 >>> 8)); out[outOffset++] = (byte)(Si[(a2 ) & 0xFF] ^ (t1 )); t1 = K[2]; out[outOffset++] = (byte)(Si[(a2 >>> 24) ] ^ (t1 >>> 24)); out[outOffset++] = (byte)(Si[(a1 >>> 16) & 0xFF] ^ (t1 >>> 16)); out[outOffset++] = (byte)(Si[(a0 >>> 8) & 0xFF] ^ (t1 >>> 8)); out[outOffset++] = (byte)(Si[(t3 ) & 0xFF] ^ (t1 )); t1 = K[3]; out[outOffset++] = (byte)(Si[(t3 >>> 24) ] ^ (t1 >>> 24)); out[outOffset++] = (byte)(Si[(a2 >>> 16) & 0xFF] ^ (t1 >>> 16)); out[outOffset++] = (byte)(Si[(a1 >>> 8) & 0xFF] ^ (t1 >>> 8)); out[outOffset ] = (byte)(Si[(a0 ) & 0xFF] ^ (t1 )); }
Expand a user-supplied key material into a session key.
Params:
  • k – The 128/192/256-bit cipher key to use.
Throws:
/** * Expand a user-supplied key material into a session key. * * @param k The 128/192/256-bit cipher key to use. * @exception InvalidKeyException If the key is invalid. */
private void makeSessionKey(byte[] k) throws InvalidKeyException { if (k == null) { throw new InvalidKeyException("Empty key"); } if (!isKeySizeValid(k.length)) { throw new InvalidKeyException("Invalid AES key length: " + k.length + " bytes"); } int ROUNDS = getRounds(k.length); int ROUND_KEY_COUNT = (ROUNDS + 1) * 4; int BC = 4; int[][] Ke = new int[ROUNDS + 1][4]; // encryption round keys int[][] Kd = new int[ROUNDS + 1][4]; // decryption round keys int KC = k.length/4; // keylen in 32-bit elements int[] tk = new int[KC]; int i, j; // copy user material bytes into temporary ints for (i = 0, j = 0; i < KC; i++, j+=4) { tk[i] = (k[j] ) << 24 | (k[j+1] & 0xFF) << 16 | (k[j+2] & 0xFF) << 8 | (k[j+3] & 0xFF); } // copy values into round key arrays int t = 0; for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / 4][t % 4] = tk[j]; Kd[ROUNDS - (t / 4)][t % 4] = tk[j]; } int tt, rconpointer = 0; while (t < ROUND_KEY_COUNT) { // extrapolate using phi (the round key evolution function) tt = tk[KC - 1]; tk[0] ^= (S[(tt >>> 16) & 0xFF] ) << 24 ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16 ^ (S[(tt ) & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 24) ] & 0xFF) ^ (rcon[rconpointer++] ) << 24; if (KC != 8) for (i = 1, j = 0; i < KC; i++, j++) tk[i] ^= tk[j]; else { for (i = 1, j = 0; i < KC / 2; i++, j++) tk[i] ^= tk[j]; tt = tk[KC / 2 - 1]; tk[KC / 2] ^= (S[(tt ) & 0xFF] & 0xFF) ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8 ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^ (S[(tt >>> 24) ] ) << 24; for (j = KC / 2, i = j + 1; i < KC; i++, j++) tk[i] ^= tk[j]; } // copy values into round key arrays for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) { Ke[t / 4][t % 4] = tk[j]; Kd[ROUNDS - (t / 4)][t % 4] = tk[j]; } } for (int r = 1; r < ROUNDS; r++) { // inverse MixColumn where needed for (j = 0; j < BC; j++) { tt = Kd[r][j]; Kd[r][j] = U1[(tt >>> 24) & 0xFF] ^ U2[(tt >>> 16) & 0xFF] ^ U3[(tt >>> 8) & 0xFF] ^ U4[ tt & 0xFF]; } } // assemble the encryption (Ke) and decryption (Kd) round keys // and expand them into arrays of ints. int[] expandedKe = expandToSubKey(Ke, false); // decrypting==false int[] expandedKd = expandToSubKey(Kd, true); // decrypting==true ROUNDS_12 = (ROUNDS>=12); ROUNDS_14 = (ROUNDS==14); limit = ROUNDS*4; // store the expanded sub keys into 'sessionK' sessionK = new int[][] { expandedKe, expandedKd }; }
Return The number of rounds for a given Rijndael keysize.
Params:
  • keySize – The size of the user key material in bytes. MUST be one of (16, 24, 32).
Returns: The number of rounds.
/** * Return The number of rounds for a given Rijndael keysize. * * @param keySize The size of the user key material in bytes. * MUST be one of (16, 24, 32). * @return The number of rounds. */
private static int getRounds(int keySize) { return (keySize >> 2) + 6; } }