package io.vertx.reactivex;
import com.fasterxml.jackson.core.ObjectCodec;
import com.fasterxml.jackson.core.type.TypeReference;
import io.reactivex.Single;
import io.reactivex.SingleObserver;
import io.reactivex.SingleTransformer;
import io.reactivex.annotations.NonNull;
import io.reactivex.disposables.Disposable;
import io.vertx.core.AsyncResult;
import io.vertx.core.Future;
import io.vertx.core.Handler;
import io.vertx.core.Promise;
import io.vertx.core.buffer.Buffer;
import io.vertx.reactivex.impl.AsyncResultSingle;
import io.vertx.reactivex.impl.SingleUnmarshaller;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.function.Consumer;
import java.util.function.Function;
Author: Julien Viet
/**
* @author <a href="mailto:julien@julienviet.com">Julien Viet</a>
*/
public class SingleHelper {
Returns a Single
that, when subscribed, uses the provided handler
to adapt a callback-based asynchronous method.
For example:
io.vertx.core.Vertx vertx = Vertx.vertx();
Single<String> deploymentId = SingleHelper.toSingle(handler -> vertx.deployVerticle("org.acme.MyVerticle", handler));
This is useful when using RxJava without the Vert.x Rxified API or your own asynchronous methods.
The asynchronous method result must not be null
, as an RxJava 2 Single
does not allow null
values.
Params: - handler – the code executed when the returned
Single
is subscribed
/**
* Returns a {@link Single} that, when subscribed, uses the provided {@code handler} to adapt a callback-based asynchronous method.
* <p>
* For example:
* <pre> {@code
* io.vertx.core.Vertx vertx = Vertx.vertx();
* Single<String> deploymentId = SingleHelper.toSingle(handler -> vertx.deployVerticle("org.acme.MyVerticle", handler));
* }</pre>
* <p>
* This is useful when using RxJava without the Vert.x Rxified API or your own asynchronous methods.
* <p>
* The asynchronous method result <strong>must not</strong> be {@code null}, as an RxJava 2 {@link Single} does not allow {@code null} values.
*
* @param handler the code executed when the returned {@link Single} is subscribed
*/
public static <T> Single<T> toSingle(Consumer<Handler<AsyncResult<T>>> handler) {
return AsyncResultSingle.toSingle(handler);
}
Adapts an Vert.x Handler<AsyncResult<T>>
to an RxJava2 SingleObserver
. The returned observer can be subscribed to an Single.subscribe(SingleObserver)
.
Params: - handler – the handler to adapt
Returns: the observer
/**
* Adapts an Vert.x {@code Handler<AsyncResult<T>>} to an RxJava2 {@link SingleObserver}.
* <p>
* The returned observer can be subscribed to an {@link Single#subscribe(SingleObserver)}.
*
* @param handler the handler to adapt
* @return the observer
*/
public static <T> SingleObserver<T> toObserver(Handler<AsyncResult<T>> handler) {
AtomicBoolean completed = new AtomicBoolean();
return new SingleObserver<T>() {
@Override
public void onSubscribe(@NonNull Disposable d) {
}
@Override
public void onSuccess(@NonNull T item) {
if (completed.compareAndSet(false, true)) {
handler.handle(Future.succeededFuture(item));
}
}
@Override
public void onError(Throwable error) {
if (completed.compareAndSet(false, true)) {
handler.handle(Future.failedFuture(error));
}
}
};
}
Adapts an RxJava2 Single<T>
to a Vert.x Future<T>
.
The single will be immediately subscribed and the returned future will
be updated with the result of the single.
Params: - single – the single to adapt
Returns: the future
/**
* Adapts an RxJava2 {@code Single<T>} to a Vert.x {@link Future<T>}.
* <p>
* The single will be immediately subscribed and the returned future will
* be updated with the result of the single.
*
* @param single the single to adapt
* @return the future
*/
public static <T> Future<T> toFuture(Single<T> single) {
Promise<T> promise = Promise.promise();
single.subscribe(promise::complete, promise::fail);
return promise.future();
}
Like toFuture(Single<Object>)
but with an adapter
of the result. /**
* Like {@link SingleHelper#toFuture(Single)} but with an {@code adapter} of the result.
*/
public static <T, U> Future<U> toFuture(Single<T> single, Function<T, U> adapter) {
return toFuture(single.map(adapter::apply));
}
public static <T> SingleTransformer<Buffer, T> unmarshaller(Class<T> mappedType) {
return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedType);
}
public static <T> SingleTransformer<Buffer, T> unmarshaller(TypeReference<T> mappedTypeRef) {
return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedTypeRef);
}
public static <T> SingleTransformer<Buffer, T> unmarshaller(Class<T> mappedType, ObjectCodec mapper) {
return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedType, mapper);
}
public static <T> SingleTransformer<Buffer, T> unmarshaller(TypeReference<T> mappedTypeRef, ObjectCodec mapper) {
return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedTypeRef, mapper);
}
}