package io.vertx.reactivex;

import com.fasterxml.jackson.core.ObjectCodec;
import com.fasterxml.jackson.core.type.TypeReference;
import io.reactivex.Single;
import io.reactivex.SingleObserver;
import io.reactivex.SingleTransformer;
import io.reactivex.annotations.NonNull;
import io.reactivex.disposables.Disposable;
import io.vertx.core.AsyncResult;
import io.vertx.core.Future;
import io.vertx.core.Handler;
import io.vertx.core.Promise;
import io.vertx.core.buffer.Buffer;
import io.vertx.reactivex.impl.AsyncResultSingle;
import io.vertx.reactivex.impl.SingleUnmarshaller;

import java.util.concurrent.atomic.AtomicBoolean;
import java.util.function.Consumer;
import java.util.function.Function;

Author:Julien Viet
/** * @author <a href="mailto:julien@julienviet.com">Julien Viet</a> */
public class SingleHelper {
Returns a Single that, when subscribed, uses the provided handler to adapt a callback-based asynchronous method.

For example:

 
io.vertx.core.Vertx vertx = Vertx.vertx();
Single<String> deploymentId = SingleHelper.toSingle(handler -> vertx.deployVerticle("org.acme.MyVerticle", handler));

This is useful when using RxJava without the Vert.x Rxified API or your own asynchronous methods.

The asynchronous method result must not be null, as an RxJava 2 Single does not allow null values.

Params:
  • handler – the code executed when the returned Single is subscribed
/** * Returns a {@link Single} that, when subscribed, uses the provided {@code handler} to adapt a callback-based asynchronous method. * <p> * For example: * <pre> {@code * io.vertx.core.Vertx vertx = Vertx.vertx(); * Single<String> deploymentId = SingleHelper.toSingle(handler -> vertx.deployVerticle("org.acme.MyVerticle", handler)); * }</pre> * <p> * This is useful when using RxJava without the Vert.x Rxified API or your own asynchronous methods. * <p> * The asynchronous method result <strong>must not</strong> be {@code null}, as an RxJava 2 {@link Single} does not allow {@code null} values. * * @param handler the code executed when the returned {@link Single} is subscribed */
public static <T> Single<T> toSingle(Consumer<Handler<AsyncResult<T>>> handler) { return AsyncResultSingle.toSingle(handler); }
Adapts an Vert.x Handler<AsyncResult<T>> to an RxJava2 SingleObserver.

The returned observer can be subscribed to an Single.subscribe(SingleObserver).

Params:
  • handler – the handler to adapt
Returns:the observer
/** * Adapts an Vert.x {@code Handler<AsyncResult<T>>} to an RxJava2 {@link SingleObserver}. * <p> * The returned observer can be subscribed to an {@link Single#subscribe(SingleObserver)}. * * @param handler the handler to adapt * @return the observer */
public static <T> SingleObserver<T> toObserver(Handler<AsyncResult<T>> handler) { AtomicBoolean completed = new AtomicBoolean(); return new SingleObserver<T>() { @Override public void onSubscribe(@NonNull Disposable d) { } @Override public void onSuccess(@NonNull T item) { if (completed.compareAndSet(false, true)) { handler.handle(Future.succeededFuture(item)); } } @Override public void onError(Throwable error) { if (completed.compareAndSet(false, true)) { handler.handle(Future.failedFuture(error)); } } }; }
Adapts an RxJava2 Single<T> to a Vert.x Future<T>.

The single will be immediately subscribed and the returned future will be updated with the result of the single.

Params:
  • single – the single to adapt
Returns:the future
/** * Adapts an RxJava2 {@code Single<T>} to a Vert.x {@link Future<T>}. * <p> * The single will be immediately subscribed and the returned future will * be updated with the result of the single. * * @param single the single to adapt * @return the future */
public static <T> Future<T> toFuture(Single<T> single) { Promise<T> promise = Promise.promise(); single.subscribe(promise::complete, promise::fail); return promise.future(); }
Like toFuture(Single<Object>) but with an adapter of the result.
/** * Like {@link SingleHelper#toFuture(Single)} but with an {@code adapter} of the result. */
public static <T, U> Future<U> toFuture(Single<T> single, Function<T, U> adapter) { return toFuture(single.map(adapter::apply)); } public static <T> SingleTransformer<Buffer, T> unmarshaller(Class<T> mappedType) { return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedType); } public static <T> SingleTransformer<Buffer, T> unmarshaller(TypeReference<T> mappedTypeRef) { return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedTypeRef); } public static <T> SingleTransformer<Buffer, T> unmarshaller(Class<T> mappedType, ObjectCodec mapper) { return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedType, mapper); } public static <T> SingleTransformer<Buffer, T> unmarshaller(TypeReference<T> mappedTypeRef, ObjectCodec mapper) { return new SingleUnmarshaller<>(java.util.function.Function.identity(), mappedTypeRef, mapper); } }