Copyright (c) 2016-present, RxJava Contributors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
/** * Copyright (c) 2016-present, RxJava Contributors. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software distributed under the License is * distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See * the License for the specific language governing permissions and limitations under the License. */
package io.reactivex.internal.operators.observable; import java.util.*; import java.util.concurrent.*; import java.util.concurrent.atomic.*; import io.reactivex.*; import io.reactivex.Observable; import io.reactivex.Observer; import io.reactivex.disposables.Disposable; import io.reactivex.exceptions.Exceptions; import io.reactivex.functions.*; import io.reactivex.internal.disposables.*; import io.reactivex.internal.functions.ObjectHelper; import io.reactivex.internal.fuseable.HasUpstreamObservableSource; import io.reactivex.internal.util.*; import io.reactivex.observables.ConnectableObservable; import io.reactivex.plugins.RxJavaPlugins; import io.reactivex.schedulers.Timed; public final class ObservableReplay<T> extends ConnectableObservable<T> implements HasUpstreamObservableSource<T>, ResettableConnectable {
The source observable.
/** The source observable. */
final ObservableSource<T> source;
Holds the current subscriber that is, will be or just was subscribed to the source observable.
/** Holds the current subscriber that is, will be or just was subscribed to the source observable. */
final AtomicReference<ReplayObserver<T>> current;
A factory that creates the appropriate buffer for the ReplayObserver.
/** A factory that creates the appropriate buffer for the ReplayObserver. */
final BufferSupplier<T> bufferFactory; final ObservableSource<T> onSubscribe; interface BufferSupplier<T> { ReplayBuffer<T> call(); } @SuppressWarnings("rawtypes") static final BufferSupplier DEFAULT_UNBOUNDED_FACTORY = new UnBoundedFactory();
Given a connectable observable factory, it multicasts over the generated ConnectableObservable via a selector function.
Params:
  • connectableFactory – the factory that returns a ConnectableObservable for each individual subscriber
  • selector – the function that receives an Observable and should return another Observable that will be subscribed to
Type parameters:
  • <U> – the value type of the ConnectableObservable
  • <R> – the result value type
Returns:the new Observable instance
/** * Given a connectable observable factory, it multicasts over the generated * ConnectableObservable via a selector function. * @param <U> the value type of the ConnectableObservable * @param <R> the result value type * @param connectableFactory the factory that returns a ConnectableObservable for each individual subscriber * @param selector the function that receives an Observable and should return another Observable that will be subscribed to * @return the new Observable instance */
public static <U, R> Observable<R> multicastSelector( final Callable<? extends ConnectableObservable<U>> connectableFactory, final Function<? super Observable<U>, ? extends ObservableSource<R>> selector) { return RxJavaPlugins.onAssembly(new MulticastReplay<R, U>(connectableFactory, selector)); }
Child Observers will observe the events of the ConnectableObservable on the specified scheduler.
Params:
  • co – the connectable observable instance
  • scheduler – the target scheduler
Type parameters:
  • <T> – the value type
Returns:the new ConnectableObservable instance
/** * Child Observers will observe the events of the ConnectableObservable on the * specified scheduler. * @param <T> the value type * @param co the connectable observable instance * @param scheduler the target scheduler * @return the new ConnectableObservable instance */
public static <T> ConnectableObservable<T> observeOn(final ConnectableObservable<T> co, final Scheduler scheduler) { final Observable<T> observable = co.observeOn(scheduler); return RxJavaPlugins.onAssembly(new Replay<T>(co, observable)); }
Creates a replaying ConnectableObservable with an unbounded buffer.
Params:
  • source – the source observable
Type parameters:
  • <T> – the value type
Returns:the new ConnectableObservable instance
/** * Creates a replaying ConnectableObservable with an unbounded buffer. * @param <T> the value type * @param source the source observable * @return the new ConnectableObservable instance */
@SuppressWarnings("unchecked") public static <T> ConnectableObservable<T> createFrom(ObservableSource<? extends T> source) { return create(source, DEFAULT_UNBOUNDED_FACTORY); }
Creates a replaying ConnectableObservable with a size bound buffer.
Params:
  • source – the source ObservableSource to use
  • bufferSize – the maximum number of elements to hold
Type parameters:
  • <T> – the value type
Returns:the new ConnectableObservable instance
/** * Creates a replaying ConnectableObservable with a size bound buffer. * @param <T> the value type * @param source the source ObservableSource to use * @param bufferSize the maximum number of elements to hold * @return the new ConnectableObservable instance */
public static <T> ConnectableObservable<T> create(ObservableSource<T> source, final int bufferSize) { if (bufferSize == Integer.MAX_VALUE) { return createFrom(source); } return create(source, new ReplayBufferSupplier<T>(bufferSize)); }
Creates a replaying ConnectableObservable with a time bound buffer.
Params:
  • source – the source ObservableSource to use
  • maxAge – the maximum age of entries
  • unit – the unit of measure of the age amount
  • scheduler – the target scheduler providing the current time
Type parameters:
  • <T> – the value type
Returns:the new ConnectableObservable instance
/** * Creates a replaying ConnectableObservable with a time bound buffer. * @param <T> the value type * @param source the source ObservableSource to use * @param maxAge the maximum age of entries * @param unit the unit of measure of the age amount * @param scheduler the target scheduler providing the current time * @return the new ConnectableObservable instance */
public static <T> ConnectableObservable<T> create(ObservableSource<T> source, long maxAge, TimeUnit unit, Scheduler scheduler) { return create(source, maxAge, unit, scheduler, Integer.MAX_VALUE); }
Creates a replaying ConnectableObservable with a size and time bound buffer.
Params:
  • source – the source ObservableSource to use
  • maxAge – the maximum age of entries
  • unit – the unit of measure of the age amount
  • scheduler – the target scheduler providing the current time
  • bufferSize – the maximum number of elements to hold
Type parameters:
  • <T> – the value type
Returns:the new ConnectableObservable instance
/** * Creates a replaying ConnectableObservable with a size and time bound buffer. * @param <T> the value type * @param source the source ObservableSource to use * @param maxAge the maximum age of entries * @param unit the unit of measure of the age amount * @param scheduler the target scheduler providing the current time * @param bufferSize the maximum number of elements to hold * @return the new ConnectableObservable instance */
public static <T> ConnectableObservable<T> create(ObservableSource<T> source, final long maxAge, final TimeUnit unit, final Scheduler scheduler, final int bufferSize) { return create(source, new ScheduledReplaySupplier<T>(bufferSize, maxAge, unit, scheduler)); }
Creates a OperatorReplay instance to replay values of the given source observable.
Params:
  • source – the source observable
  • bufferFactory – the factory to instantiate the appropriate buffer when the observable becomes active
Returns:the connectable observable
/** * Creates a OperatorReplay instance to replay values of the given source observable. * @param source the source observable * @param bufferFactory the factory to instantiate the appropriate buffer when the observable becomes active * @return the connectable observable */
static <T> ConnectableObservable<T> create(ObservableSource<T> source, final BufferSupplier<T> bufferFactory) { // the current connection to source needs to be shared between the operator and its onSubscribe call final AtomicReference<ReplayObserver<T>> curr = new AtomicReference<ReplayObserver<T>>(); ObservableSource<T> onSubscribe = new ReplaySource<T>(curr, bufferFactory); return RxJavaPlugins.onAssembly(new ObservableReplay<T>(onSubscribe, source, curr, bufferFactory)); } private ObservableReplay(ObservableSource<T> onSubscribe, ObservableSource<T> source, final AtomicReference<ReplayObserver<T>> current, final BufferSupplier<T> bufferFactory) { this.onSubscribe = onSubscribe; this.source = source; this.current = current; this.bufferFactory = bufferFactory; } @Override public ObservableSource<T> source() { return source; } @SuppressWarnings({ "unchecked", "rawtypes" }) @Override public void resetIf(Disposable connectionObject) { current.compareAndSet((ReplayObserver)connectionObject, null); } @Override protected void subscribeActual(Observer<? super T> observer) { onSubscribe.subscribe(observer); } @Override public void connect(Consumer<? super Disposable> connection) { boolean doConnect; ReplayObserver<T> ps; // we loop because concurrent connect/disconnect and termination may change the state for (;;) { // retrieve the current subscriber-to-source instance ps = current.get(); // if there is none yet or the current has been disposed if (ps == null || ps.isDisposed()) { // create a new subscriber-to-source ReplayBuffer<T> buf = bufferFactory.call(); ReplayObserver<T> u = new ReplayObserver<T>(buf); // try setting it as the current subscriber-to-source if (!current.compareAndSet(ps, u)) { // did not work, perhaps a new subscriber arrived // and created a new subscriber-to-source as well, retry continue; } ps = u; } // if connect() was called concurrently, only one of them should actually // connect to the source doConnect = !ps.shouldConnect.get() && ps.shouldConnect.compareAndSet(false, true); break; // NOPMD } /* * Notify the callback that we have a (new) connection which it can dispose * but since ps is unique to a connection, multiple calls to connect() will return the * same Disposable and even if there was a connect-disconnect-connect pair, the older * references won't disconnect the newer connection. * Synchronous source consumers have the opportunity to disconnect via dispose() on the * Disposable as subscribe() may never return in its own. * * Note however, that asynchronously disconnecting a running source might leave * child observers without any terminal event; ReplaySubject does not have this * issue because the dispose() call was always triggered by the child observers * themselves. */ try { connection.accept(ps); } catch (Throwable ex) { if (doConnect) { ps.shouldConnect.compareAndSet(true, false); } Exceptions.throwIfFatal(ex); throw ExceptionHelper.wrapOrThrow(ex); } if (doConnect) { source.subscribe(ps); } } @SuppressWarnings("rawtypes") static final class ReplayObserver<T> extends AtomicReference<Disposable> implements Observer<T>, Disposable { private static final long serialVersionUID = -533785617179540163L;
Holds notifications from upstream.
/** Holds notifications from upstream. */
final ReplayBuffer<T> buffer;
Indicates this Observer received a terminal event.
/** Indicates this Observer received a terminal event. */
boolean done;
Indicates an empty array of inner observers.
/** Indicates an empty array of inner observers. */
static final InnerDisposable[] EMPTY = new InnerDisposable[0];
Indicates a terminated ReplayObserver.
/** Indicates a terminated ReplayObserver. */
static final InnerDisposable[] TERMINATED = new InnerDisposable[0];
Tracks the subscribed observers.
/** Tracks the subscribed observers. */
final AtomicReference<InnerDisposable[]> observers;
Atomically changed from false to true by connect to make sure the connection is only performed by one thread.
/** * Atomically changed from false to true by connect to make sure the * connection is only performed by one thread. */
final AtomicBoolean shouldConnect; ReplayObserver(ReplayBuffer<T> buffer) { this.buffer = buffer; this.observers = new AtomicReference<InnerDisposable[]>(EMPTY); this.shouldConnect = new AtomicBoolean(); } @Override public boolean isDisposed() { return observers.get() == TERMINATED; } @Override public void dispose() { observers.set(TERMINATED); // unlike OperatorPublish, we can't null out the terminated so // late observers can still get replay // current.compareAndSet(ReplayObserver.this, null); // we don't care if it fails because it means the current has // been replaced in the meantime DisposableHelper.dispose(this); }
Atomically try adding a new InnerDisposable to this Observer or return false if this Observer was terminated.
Params:
  • producer – the producer to add
Returns:true if succeeded, false otherwise
/** * Atomically try adding a new InnerDisposable to this Observer or return false if this * Observer was terminated. * @param producer the producer to add * @return true if succeeded, false otherwise */
boolean add(InnerDisposable<T> producer) { // the state can change so we do a CAS loop to achieve atomicity for (;;) { // get the current producer array InnerDisposable[] c = observers.get(); // if this subscriber-to-source reached a terminal state by receiving // an onError or onComplete, just refuse to add the new producer if (c == TERMINATED) { return false; } // we perform a copy-on-write logic int len = c.length; InnerDisposable[] u = new InnerDisposable[len + 1]; System.arraycopy(c, 0, u, 0, len); u[len] = producer; // try setting the observers array if (observers.compareAndSet(c, u)) { return true; } // if failed, some other operation succeeded (another add, remove or termination) // so retry } }
Atomically removes the given InnerDisposable from the observers array.
Params:
  • producer – the producer to remove
/** * Atomically removes the given InnerDisposable from the observers array. * @param producer the producer to remove */
void remove(InnerDisposable<T> producer) { // the state can change so we do a CAS loop to achieve atomicity for (;;) { // let's read the current observers array InnerDisposable[] c = observers.get(); int len = c.length; // if it is either empty or terminated, there is nothing to remove so we quit if (len == 0) { return; } // let's find the supplied producer in the array // although this is O(n), we don't expect too many child observers in general int j = -1; for (int i = 0; i < len; i++) { if (c[i].equals(producer)) { j = i; break; } } // we didn't find it so just quit if (j < 0) { return; } // we do copy-on-write logic here InnerDisposable[] u; // we don't create a new empty array if producer was the single inhabitant // but rather reuse an empty array if (len == 1) { u = EMPTY; } else { // otherwise, create a new array one less in size u = new InnerDisposable[len - 1]; // copy elements being before the given producer System.arraycopy(c, 0, u, 0, j); // copy elements being after the given producer System.arraycopy(c, j + 1, u, j, len - j - 1); } // try setting this new array as if (observers.compareAndSet(c, u)) { return; } // if we failed, it means something else happened // (a concurrent add/remove or termination), we need to retry } } @Override public void onSubscribe(Disposable p) { if (DisposableHelper.setOnce(this, p)) { replay(); } } @Override public void onNext(T t) { if (!done) { buffer.next(t); replay(); } } @Override public void onError(Throwable e) { // The observer front is accessed serially as required by spec so // no need to CAS in the terminal value if (!done) { done = true; buffer.error(e); replayFinal(); } else { RxJavaPlugins.onError(e); } } @Override public void onComplete() { // The observer front is accessed serially as required by spec so // no need to CAS in the terminal value if (!done) { done = true; buffer.complete(); replayFinal(); } }
Tries to replay the buffer contents to all known observers.
/** * Tries to replay the buffer contents to all known observers. */
void replay() { @SuppressWarnings("unchecked") InnerDisposable<T>[] a = observers.get(); for (InnerDisposable<T> rp : a) { buffer.replay(rp); } }
Tries to replay the buffer contents to all known observers.
/** * Tries to replay the buffer contents to all known observers. */
void replayFinal() { @SuppressWarnings("unchecked") InnerDisposable<T>[] a = observers.getAndSet(TERMINATED); for (InnerDisposable<T> rp : a) { buffer.replay(rp); } } }
A Disposable that manages the disposed state of a child Observer in thread-safe manner.
Type parameters:
  • <T> – the value type
/** * A Disposable that manages the disposed state of a * child Observer in thread-safe manner. * @param <T> the value type */
static final class InnerDisposable<T> extends AtomicInteger implements Disposable { private static final long serialVersionUID = 2728361546769921047L;
The parent subscriber-to-source used to allow removing the child in case of child dispose() call.
/** * The parent subscriber-to-source used to allow removing the child in case of * child dispose() call. */
final ReplayObserver<T> parent;
The actual child subscriber.
/** The actual child subscriber. */
final Observer<? super T> child;
Holds an object that represents the current location in the buffer. Guarded by the emitter loop.
/** * Holds an object that represents the current location in the buffer. * Guarded by the emitter loop. */
Object index; volatile boolean cancelled; InnerDisposable(ReplayObserver<T> parent, Observer<? super T> child) { this.parent = parent; this.child = child; } @Override public boolean isDisposed() { return cancelled; } @Override public void dispose() { if (!cancelled) { cancelled = true; // remove this from the parent parent.remove(this); // make sure the last known node is not retained index = null; } }
Convenience method to auto-cast the index object.
Returns:the index Object or null
/** * Convenience method to auto-cast the index object. * @return the index Object or null */
@SuppressWarnings("unchecked") <U> U index() { return (U)index; } }
The interface for interacting with various buffering logic.
Type parameters:
  • <T> – the value type
/** * The interface for interacting with various buffering logic. * * @param <T> the value type */
interface ReplayBuffer<T> {
Adds a regular value to the buffer.
Params:
  • value – the value to be stored in the buffer
/** * Adds a regular value to the buffer. * @param value the value to be stored in the buffer */
void next(T value);
Adds a terminal exception to the buffer.
Params:
  • e – the error to be stored in the buffer
/** * Adds a terminal exception to the buffer. * @param e the error to be stored in the buffer */
void error(Throwable e);
Adds a completion event to the buffer.
/** * Adds a completion event to the buffer. */
void complete();
Tries to replay the buffered values to the subscriber inside the output if there is new value and requests available at the same time.
Params:
  • output – the receiver of the buffered events
/** * Tries to replay the buffered values to the * subscriber inside the output if there * is new value and requests available at the * same time. * @param output the receiver of the buffered events */
void replay(InnerDisposable<T> output); }
Holds an unbounded list of events.
Type parameters:
  • <T> – the value type
/** * Holds an unbounded list of events. * * @param <T> the value type */
static final class UnboundedReplayBuffer<T> extends ArrayList<Object> implements ReplayBuffer<T> { private static final long serialVersionUID = 7063189396499112664L;
The total number of events in the buffer.
/** The total number of events in the buffer. */
volatile int size; UnboundedReplayBuffer(int capacityHint) { super(capacityHint); } @Override public void next(T value) { add(NotificationLite.next(value)); size++; } @Override public void error(Throwable e) { add(NotificationLite.error(e)); size++; } @Override public void complete() { add(NotificationLite.complete()); size++; } @Override public void replay(InnerDisposable<T> output) { if (output.getAndIncrement() != 0) { return; } final Observer<? super T> child = output.child; int missed = 1; for (;;) { if (output.isDisposed()) { return; } int sourceIndex = size; Integer destinationIndexObject = output.index(); int destinationIndex = destinationIndexObject != null ? destinationIndexObject : 0; while (destinationIndex < sourceIndex) { Object o = get(destinationIndex); if (NotificationLite.accept(o, child)) { return; } if (output.isDisposed()) { return; } destinationIndex++; } output.index = destinationIndex; missed = output.addAndGet(-missed); if (missed == 0) { break; } } } }
Represents a node in a bounded replay buffer's linked list.
/** * Represents a node in a bounded replay buffer's linked list. */
static final class Node extends AtomicReference<Node> { private static final long serialVersionUID = 245354315435971818L; final Object value; Node(Object value) { this.value = value; } }
Base class for bounded buffering with options to specify an enter and leave transforms and custom truncation behavior.
Type parameters:
  • <T> – the value type
/** * Base class for bounded buffering with options to specify an * enter and leave transforms and custom truncation behavior. * * @param <T> the value type */
abstract static class BoundedReplayBuffer<T> extends AtomicReference<Node> implements ReplayBuffer<T> { private static final long serialVersionUID = 2346567790059478686L; Node tail; int size; BoundedReplayBuffer() { Node n = new Node(null); tail = n; set(n); }
Add a new node to the linked list.
Params:
  • n – the Node instance to add as last
/** * Add a new node to the linked list. * @param n the Node instance to add as last */
final void addLast(Node n) { tail.set(n); tail = n; size++; }
Remove the first node from the linked list.
/** * Remove the first node from the linked list. */
final void removeFirst() { Node head = get(); Node next = head.get(); size--; // can't just move the head because it would retain the very first value // can't null out the head's value because of late replayers would see null setFirst(next); } final void trimHead() { Node head = get(); if (head.value != null) { Node n = new Node(null); n.lazySet(head.get()); set(n); } } /* test */ final void removeSome(int n) { Node head = get(); while (n > 0) { head = head.get(); n--; size--; } setFirst(head); // correct the tail if all items have been removed head = get(); if (head.get() == null) { tail = head; } }
Arranges the given node is the new head from now on.
Params:
  • n – the Node instance to set as first
/** * Arranges the given node is the new head from now on. * @param n the Node instance to set as first */
final void setFirst(Node n) { set(n); } @Override public final void next(T value) { Object o = enterTransform(NotificationLite.next(value)); Node n = new Node(o); addLast(n); truncate(); } @Override public final void error(Throwable e) { Object o = enterTransform(NotificationLite.error(e)); Node n = new Node(o); addLast(n); truncateFinal(); } @Override public final void complete() { Object o = enterTransform(NotificationLite.complete()); Node n = new Node(o); addLast(n); truncateFinal(); } @Override public final void replay(InnerDisposable<T> output) { if (output.getAndIncrement() != 0) { return; } int missed = 1; for (;;) { Node node = output.index(); if (node == null) { node = getHead(); output.index = node; } for (;;) { if (output.isDisposed()) { output.index = null; return; } Node v = node.get(); if (v != null) { Object o = leaveTransform(v.value); if (NotificationLite.accept(o, output.child)) { output.index = null; return; } node = v; } else { break; } } output.index = node; missed = output.addAndGet(-missed); if (missed == 0) { break; } } }
Override this to wrap the NotificationLite object into a container to be used later by truncate.
Params:
  • value – the value to transform into the internal representation
Returns:the transformed value
/** * Override this to wrap the NotificationLite object into a * container to be used later by truncate. * @param value the value to transform into the internal representation * @return the transformed value */
Object enterTransform(Object value) { return value; }
Override this to unwrap the transformed value into a NotificationLite object.
Params:
  • value – the value in the internal representation to transform
Returns:the transformed value
/** * Override this to unwrap the transformed value into a * NotificationLite object. * @param value the value in the internal representation to transform * @return the transformed value */
Object leaveTransform(Object value) { return value; }
Override this method to truncate a non-terminated buffer based on its current properties.
/** * Override this method to truncate a non-terminated buffer * based on its current properties. */
abstract void truncate();
Override this method to truncate a terminated buffer based on its properties (i.e., truncate but the very last node).
/** * Override this method to truncate a terminated buffer * based on its properties (i.e., truncate but the very last node). */
void truncateFinal() { trimHead(); } /* test */ final void collect(Collection<? super T> output) { Node n = getHead(); for (;;) { Node next = n.get(); if (next != null) { Object o = next.value; Object v = leaveTransform(o); if (NotificationLite.isComplete(v) || NotificationLite.isError(v)) { break; } output.add(NotificationLite.<T>getValue(v)); n = next; } else { break; } } } /* test */ boolean hasError() { return tail.value != null && NotificationLite.isError(leaveTransform(tail.value)); } /* test */ boolean hasCompleted() { return tail.value != null && NotificationLite.isComplete(leaveTransform(tail.value)); } Node getHead() { return get(); } }
A bounded replay buffer implementation with size limit only.
Type parameters:
  • <T> – the value type
/** * A bounded replay buffer implementation with size limit only. * * @param <T> the value type */
static final class SizeBoundReplayBuffer<T> extends BoundedReplayBuffer<T> { private static final long serialVersionUID = -5898283885385201806L; final int limit; SizeBoundReplayBuffer(int limit) { this.limit = limit; } @Override void truncate() { // overflow can be at most one element if (size > limit) { removeFirst(); } } // no need for final truncation because values are truncated one by one }
Size and time bound replay buffer.
Type parameters:
  • <T> – the buffered value type
/** * Size and time bound replay buffer. * * @param <T> the buffered value type */
static final class SizeAndTimeBoundReplayBuffer<T> extends BoundedReplayBuffer<T> { private static final long serialVersionUID = 3457957419649567404L; final Scheduler scheduler; final long maxAge; final TimeUnit unit; final int limit; SizeAndTimeBoundReplayBuffer(int limit, long maxAge, TimeUnit unit, Scheduler scheduler) { this.scheduler = scheduler; this.limit = limit; this.maxAge = maxAge; this.unit = unit; } @Override Object enterTransform(Object value) { return new Timed<Object>(value, scheduler.now(unit), unit); } @Override Object leaveTransform(Object value) { return ((Timed<?>)value).value(); } @Override void truncate() { long timeLimit = scheduler.now(unit) - maxAge; Node prev = get(); Node next = prev.get(); int e = 0; for (;;) { if (next != null) { if (size > limit && size > 1) { // never truncate the very last item just added e++; size--; prev = next; next = next.get(); } else { Timed<?> v = (Timed<?>)next.value; if (v.time() <= timeLimit) { e++; size--; prev = next; next = next.get(); } else { break; } } } else { break; } } if (e != 0) { setFirst(prev); } } @Override void truncateFinal() { long timeLimit = scheduler.now(unit) - maxAge; Node prev = get(); Node next = prev.get(); int e = 0; for (;;) { if (next != null && size > 1) { Timed<?> v = (Timed<?>)next.value; if (v.time() <= timeLimit) { e++; size--; prev = next; next = next.get(); } else { break; } } else { break; } } if (e != 0) { setFirst(prev); } } @Override Node getHead() { long timeLimit = scheduler.now(unit) - maxAge; Node prev = get(); Node next = prev.get(); for (;;) { if (next == null) { break; } Timed<?> v = (Timed<?>)next.value; if (NotificationLite.isComplete(v.value()) || NotificationLite.isError(v.value())) { break; } if (v.time() <= timeLimit) { prev = next; next = next.get(); } else { break; } } return prev; } } static final class UnBoundedFactory implements BufferSupplier<Object> { @Override public ReplayBuffer<Object> call() { return new UnboundedReplayBuffer<Object>(16); } } static final class DisposeConsumer<R> implements Consumer<Disposable> { private final ObserverResourceWrapper<R> srw; DisposeConsumer(ObserverResourceWrapper<R> srw) { this.srw = srw; } @Override public void accept(Disposable r) { srw.setResource(r); } } static final class ReplayBufferSupplier<T> implements BufferSupplier<T> { private final int bufferSize; ReplayBufferSupplier(int bufferSize) { this.bufferSize = bufferSize; } @Override public ReplayBuffer<T> call() { return new SizeBoundReplayBuffer<T>(bufferSize); } } static final class ScheduledReplaySupplier<T> implements BufferSupplier<T> { private final int bufferSize; private final long maxAge; private final TimeUnit unit; private final Scheduler scheduler; ScheduledReplaySupplier(int bufferSize, long maxAge, TimeUnit unit, Scheduler scheduler) { this.bufferSize = bufferSize; this.maxAge = maxAge; this.unit = unit; this.scheduler = scheduler; } @Override public ReplayBuffer<T> call() { return new SizeAndTimeBoundReplayBuffer<T>(bufferSize, maxAge, unit, scheduler); } } static final class ReplaySource<T> implements ObservableSource<T> { private final AtomicReference<ReplayObserver<T>> curr; private final BufferSupplier<T> bufferFactory; ReplaySource(AtomicReference<ReplayObserver<T>> curr, BufferSupplier<T> bufferFactory) { this.curr = curr; this.bufferFactory = bufferFactory; } @Override public void subscribe(Observer<? super T> child) { // concurrent connection/disconnection may change the state, // we loop to be atomic while the child subscribes for (;;) { // get the current subscriber-to-source ReplayObserver<T> r = curr.get(); // if there isn't one if (r == null) { // create a new subscriber to source ReplayBuffer<T> buf = bufferFactory.call(); ReplayObserver<T> u = new ReplayObserver<T>(buf); // let's try setting it as the current subscriber-to-source if (!curr.compareAndSet(null, u)) { // didn't work, maybe someone else did it or the current subscriber // to source has just finished continue; } // we won, let's use it going onwards r = u; } // create the backpressure-managing producer for this child InnerDisposable<T> inner = new InnerDisposable<T>(r, child); // the producer has been registered with the current subscriber-to-source so // at least it will receive the next terminal event // setting the producer will trigger the first request to be considered by // the subscriber-to-source. child.onSubscribe(inner); // we try to add it to the array of observers // if it fails, no worries because we will still have its buffer // so it is going to replay it for us r.add(inner); if (inner.isDisposed()) { r.remove(inner); return; } // replay the contents of the buffer r.buffer.replay(inner); break; // NOPMD } } } static final class MulticastReplay<R, U> extends Observable<R> { private final Callable<? extends ConnectableObservable<U>> connectableFactory; private final Function<? super Observable<U>, ? extends ObservableSource<R>> selector; MulticastReplay(Callable<? extends ConnectableObservable<U>> connectableFactory, Function<? super Observable<U>, ? extends ObservableSource<R>> selector) { this.connectableFactory = connectableFactory; this.selector = selector; } @Override protected void subscribeActual(Observer<? super R> child) { ConnectableObservable<U> co; ObservableSource<R> observable; try { co = ObjectHelper.requireNonNull(connectableFactory.call(), "The connectableFactory returned a null ConnectableObservable"); observable = ObjectHelper.requireNonNull(selector.apply(co), "The selector returned a null ObservableSource"); } catch (Throwable e) { Exceptions.throwIfFatal(e); EmptyDisposable.error(e, child); return; } final ObserverResourceWrapper<R> srw = new ObserverResourceWrapper<R>(child); observable.subscribe(srw); co.connect(new DisposeConsumer<R>(srw)); } } static final class Replay<T> extends ConnectableObservable<T> { private final ConnectableObservable<T> co; private final Observable<T> observable; Replay(ConnectableObservable<T> co, Observable<T> observable) { this.co = co; this.observable = observable; } @Override public void connect(Consumer<? super Disposable> connection) { co.connect(connection); } @Override protected void subscribeActual(Observer<? super T> observer) { observable.subscribe(observer); } } }