/*
* Copyright 2013 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.channel;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufHolder;
import io.netty.buffer.Unpooled;
import io.netty.channel.socket.nio.NioSocketChannel;
import io.netty.util.Recycler;
import io.netty.util.Recycler.Handle;
import io.netty.util.ReferenceCountUtil;
import io.netty.util.concurrent.FastThreadLocal;
import io.netty.util.internal.InternalThreadLocalMap;
import io.netty.util.internal.PromiseNotificationUtil;
import io.netty.util.internal.SystemPropertyUtil;
import io.netty.util.internal.logging.InternalLogger;
import io.netty.util.internal.logging.InternalLoggerFactory;
import java.nio.ByteBuffer;
import java.nio.channels.ClosedChannelException;
import java.util.Arrays;
import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;
import java.util.concurrent.atomic.AtomicLongFieldUpdater;
import static java.lang.Math.min;
(Transport implementors only) an internal data structure used by AbstractChannel
to store its pending outbound write requests.
All methods must be called by a transport implementation from an I/O thread, except the following ones:
/**
* (Transport implementors only) an internal data structure used by {@link AbstractChannel} to store its pending
* outbound write requests.
* <p>
* All methods must be called by a transport implementation from an I/O thread, except the following ones:
* <ul>
* <li>{@link #size()} and {@link #isEmpty()}</li>
* <li>{@link #isWritable()}</li>
* <li>{@link #getUserDefinedWritability(int)} and {@link #setUserDefinedWritability(int, boolean)}</li>
* </ul>
* </p>
*/
public final class ChannelOutboundBuffer {
// Assuming a 64-bit JVM:
// - 16 bytes object header
// - 8 reference fields
// - 2 long fields
// - 2 int fields
// - 1 boolean field
// - padding
static final int CHANNEL_OUTBOUND_BUFFER_ENTRY_OVERHEAD =
SystemPropertyUtil.getInt("io.netty.transport.outboundBufferEntrySizeOverhead", 96);
private static final InternalLogger logger = InternalLoggerFactory.getInstance(ChannelOutboundBuffer.class);
private static final FastThreadLocal<ByteBuffer[]> NIO_BUFFERS = new FastThreadLocal<ByteBuffer[]>() {
@Override
protected ByteBuffer[] initialValue() throws Exception {
return new ByteBuffer[1024];
}
};
private final Channel channel;
// Entry(flushedEntry) --> ... Entry(unflushedEntry) --> ... Entry(tailEntry)
//
// The Entry that is the first in the linked-list structure that was flushed
private Entry flushedEntry;
// The Entry which is the first unflushed in the linked-list structure
private Entry unflushedEntry;
// The Entry which represents the tail of the buffer
private Entry tailEntry;
// The number of flushed entries that are not written yet
private int flushed;
private int nioBufferCount;
private long nioBufferSize;
private boolean inFail;
private static final AtomicLongFieldUpdater<ChannelOutboundBuffer> TOTAL_PENDING_SIZE_UPDATER =
AtomicLongFieldUpdater.newUpdater(ChannelOutboundBuffer.class, "totalPendingSize");
@SuppressWarnings("UnusedDeclaration")
private volatile long totalPendingSize;
private static final AtomicIntegerFieldUpdater<ChannelOutboundBuffer> UNWRITABLE_UPDATER =
AtomicIntegerFieldUpdater.newUpdater(ChannelOutboundBuffer.class, "unwritable");
@SuppressWarnings("UnusedDeclaration")
private volatile int unwritable;
private volatile Runnable fireChannelWritabilityChangedTask;
ChannelOutboundBuffer(AbstractChannel channel) {
this.channel = channel;
}
Add given message to this ChannelOutboundBuffer
. The given ChannelPromise
will be notified once the message was written. /**
* Add given message to this {@link ChannelOutboundBuffer}. The given {@link ChannelPromise} will be notified once
* the message was written.
*/
public void addMessage(Object msg, int size, ChannelPromise promise) {
Entry entry = Entry.newInstance(msg, size, total(msg), promise);
if (tailEntry == null) {
flushedEntry = null;
} else {
Entry tail = tailEntry;
tail.next = entry;
}
tailEntry = entry;
if (unflushedEntry == null) {
unflushedEntry = entry;
}
// increment pending bytes after adding message to the unflushed arrays.
// See https://github.com/netty/netty/issues/1619
incrementPendingOutboundBytes(entry.pendingSize, false);
}
Add a flush to this ChannelOutboundBuffer
. This means all previous added messages are marked as flushed and so you will be able to handle them. /**
* Add a flush to this {@link ChannelOutboundBuffer}. This means all previous added messages are marked as flushed
* and so you will be able to handle them.
*/
public void addFlush() {
// There is no need to process all entries if there was already a flush before and no new messages
// where added in the meantime.
//
// See https://github.com/netty/netty/issues/2577
Entry entry = unflushedEntry;
if (entry != null) {
if (flushedEntry == null) {
// there is no flushedEntry yet, so start with the entry
flushedEntry = entry;
}
do {
flushed ++;
if (!entry.promise.setUncancellable()) {
// Was cancelled so make sure we free up memory and notify about the freed bytes
int pending = entry.cancel();
decrementPendingOutboundBytes(pending, false, true);
}
entry = entry.next;
} while (entry != null);
// All flushed so reset unflushedEntry
unflushedEntry = null;
}
}
Increment the pending bytes which will be written at some point.
This method is thread-safe!
/**
* Increment the pending bytes which will be written at some point.
* This method is thread-safe!
*/
void incrementPendingOutboundBytes(long size) {
incrementPendingOutboundBytes(size, true);
}
private void incrementPendingOutboundBytes(long size, boolean invokeLater) {
if (size == 0) {
return;
}
long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, size);
if (newWriteBufferSize > channel.config().getWriteBufferHighWaterMark()) {
setUnwritable(invokeLater);
}
}
Decrement the pending bytes which will be written at some point.
This method is thread-safe!
/**
* Decrement the pending bytes which will be written at some point.
* This method is thread-safe!
*/
void decrementPendingOutboundBytes(long size) {
decrementPendingOutboundBytes(size, true, true);
}
private void decrementPendingOutboundBytes(long size, boolean invokeLater, boolean notifyWritability) {
if (size == 0) {
return;
}
long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, -size);
if (notifyWritability && newWriteBufferSize < channel.config().getWriteBufferLowWaterMark()) {
setWritable(invokeLater);
}
}
private static long total(Object msg) {
if (msg instanceof ByteBuf) {
return ((ByteBuf) msg).readableBytes();
}
if (msg instanceof FileRegion) {
return ((FileRegion) msg).count();
}
if (msg instanceof ByteBufHolder) {
return ((ByteBufHolder) msg).content().readableBytes();
}
return -1;
}
Return the current message to write or null
if nothing was flushed before and so is ready to be written. /**
* Return the current message to write or {@code null} if nothing was flushed before and so is ready to be written.
*/
public Object current() {
Entry entry = flushedEntry;
if (entry == null) {
return null;
}
return entry.msg;
}
Notify the ChannelPromise
of the current message about writing progress. /**
* Notify the {@link ChannelPromise} of the current message about writing progress.
*/
public void progress(long amount) {
Entry e = flushedEntry;
assert e != null;
ChannelPromise p = e.promise;
if (p instanceof ChannelProgressivePromise) {
long progress = e.progress + amount;
e.progress = progress;
((ChannelProgressivePromise) p).tryProgress(progress, e.total);
}
}
Will remove the current message, mark its ChannelPromise
as success and return true
. If no flushed message exists at the time this method is called it will return false
to signal that no more messages are ready to be handled. /**
* Will remove the current message, mark its {@link ChannelPromise} as success and return {@code true}. If no
* flushed message exists at the time this method is called it will return {@code false} to signal that no more
* messages are ready to be handled.
*/
public boolean remove() {
Entry e = flushedEntry;
if (e == null) {
clearNioBuffers();
return false;
}
Object msg = e.msg;
ChannelPromise promise = e.promise;
int size = e.pendingSize;
removeEntry(e);
if (!e.cancelled) {
// only release message, notify and decrement if it was not canceled before.
ReferenceCountUtil.safeRelease(msg);
safeSuccess(promise);
decrementPendingOutboundBytes(size, false, true);
}
// recycle the entry
e.recycle();
return true;
}
Will remove the current message, mark its ChannelPromise
as failure using the given Throwable
and return true
. If no flushed message exists at the time this method is called it will return false
to signal that no more messages are ready to be handled. /**
* Will remove the current message, mark its {@link ChannelPromise} as failure using the given {@link Throwable}
* and return {@code true}. If no flushed message exists at the time this method is called it will return
* {@code false} to signal that no more messages are ready to be handled.
*/
public boolean remove(Throwable cause) {
return remove0(cause, true);
}
private boolean remove0(Throwable cause, boolean notifyWritability) {
Entry e = flushedEntry;
if (e == null) {
clearNioBuffers();
return false;
}
Object msg = e.msg;
ChannelPromise promise = e.promise;
int size = e.pendingSize;
removeEntry(e);
if (!e.cancelled) {
// only release message, fail and decrement if it was not canceled before.
ReferenceCountUtil.safeRelease(msg);
safeFail(promise, cause);
decrementPendingOutboundBytes(size, false, notifyWritability);
}
// recycle the entry
e.recycle();
return true;
}
private void removeEntry(Entry e) {
if (-- flushed == 0) {
// processed everything
flushedEntry = null;
if (e == tailEntry) {
tailEntry = null;
unflushedEntry = null;
}
} else {
flushedEntry = e.next;
}
}
Removes the fully written entries and update the reader index of the partially written entry. This operation assumes all messages in this buffer is ByteBuf
. /**
* Removes the fully written entries and update the reader index of the partially written entry.
* This operation assumes all messages in this buffer is {@link ByteBuf}.
*/
public void removeBytes(long writtenBytes) {
for (;;) {
Object msg = current();
if (!(msg instanceof ByteBuf)) {
assert writtenBytes == 0;
break;
}
final ByteBuf buf = (ByteBuf) msg;
final int readerIndex = buf.readerIndex();
final int readableBytes = buf.writerIndex() - readerIndex;
if (readableBytes <= writtenBytes) {
if (writtenBytes != 0) {
progress(readableBytes);
writtenBytes -= readableBytes;
}
remove();
} else { // readableBytes > writtenBytes
if (writtenBytes != 0) {
buf.readerIndex(readerIndex + (int) writtenBytes);
progress(writtenBytes);
}
break;
}
}
clearNioBuffers();
}
// Clear all ByteBuffer from the array so these can be GC'ed.
// See https://github.com/netty/netty/issues/3837
private void clearNioBuffers() {
int count = nioBufferCount;
if (count > 0) {
nioBufferCount = 0;
Arrays.fill(NIO_BUFFERS.get(), 0, count, null);
}
}
Returns an array of direct NIO buffers if the currently pending messages are made of ByteBuf
only. nioBufferCount()
and nioBufferSize()
will return the number of NIO buffers in the returned array and the total number of readable bytes of the NIO buffers respectively. Note that the returned array is reused and thus should not escape AbstractChannel.doWrite(ChannelOutboundBuffer)
. Refer to NioSocketChannel.doWrite(ChannelOutboundBuffer)
for an example.
/**
* Returns an array of direct NIO buffers if the currently pending messages are made of {@link ByteBuf} only.
* {@link #nioBufferCount()} and {@link #nioBufferSize()} will return the number of NIO buffers in the returned
* array and the total number of readable bytes of the NIO buffers respectively.
* <p>
* Note that the returned array is reused and thus should not escape
* {@link AbstractChannel#doWrite(ChannelOutboundBuffer)}.
* Refer to {@link NioSocketChannel#doWrite(ChannelOutboundBuffer)} for an example.
* </p>
*/
public ByteBuffer[] nioBuffers() {
return nioBuffers(Integer.MAX_VALUE, Integer.MAX_VALUE);
}
Returns an array of direct NIO buffers if the currently pending messages are made of ByteBuf
only. nioBufferCount()
and nioBufferSize()
will return the number of NIO buffers in the returned array and the total number of readable bytes of the NIO buffers respectively. Note that the returned array is reused and thus should not escape AbstractChannel.doWrite(ChannelOutboundBuffer)
. Refer to NioSocketChannel.doWrite(ChannelOutboundBuffer)
for an example.
Params: - maxCount – The maximum amount of buffers that will be added to the return value.
- maxBytes – A hint toward the maximum number of bytes to include as part of the return value. Note that this value maybe exceeded because we make a best effort to include at least 1
ByteBuffer
in the return value to ensure write progress is made.
/**
* Returns an array of direct NIO buffers if the currently pending messages are made of {@link ByteBuf} only.
* {@link #nioBufferCount()} and {@link #nioBufferSize()} will return the number of NIO buffers in the returned
* array and the total number of readable bytes of the NIO buffers respectively.
* <p>
* Note that the returned array is reused and thus should not escape
* {@link AbstractChannel#doWrite(ChannelOutboundBuffer)}.
* Refer to {@link NioSocketChannel#doWrite(ChannelOutboundBuffer)} for an example.
* </p>
* @param maxCount The maximum amount of buffers that will be added to the return value.
* @param maxBytes A hint toward the maximum number of bytes to include as part of the return value. Note that this
* value maybe exceeded because we make a best effort to include at least 1 {@link ByteBuffer}
* in the return value to ensure write progress is made.
*/
public ByteBuffer[] nioBuffers(int maxCount, long maxBytes) {
assert maxCount > 0;
assert maxBytes > 0;
long nioBufferSize = 0;
int nioBufferCount = 0;
final InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get();
ByteBuffer[] nioBuffers = NIO_BUFFERS.get(threadLocalMap);
Entry entry = flushedEntry;
while (isFlushedEntry(entry) && entry.msg instanceof ByteBuf) {
if (!entry.cancelled) {
ByteBuf buf = (ByteBuf) entry.msg;
final int readerIndex = buf.readerIndex();
final int readableBytes = buf.writerIndex() - readerIndex;
if (readableBytes > 0) {
if (maxBytes - readableBytes < nioBufferSize && nioBufferCount != 0) {
// If the nioBufferSize + readableBytes will overflow maxBytes, and there is at least one entry
// we stop populate the ByteBuffer array. This is done for 2 reasons:
// 1. bsd/osx don't allow to write more bytes then Integer.MAX_VALUE with one writev(...) call
// and so will return 'EINVAL', which will raise an IOException. On Linux it may work depending
// on the architecture and kernel but to be safe we also enforce the limit here.
// 2. There is no sense in putting more data in the array than is likely to be accepted by the
// OS.
//
// See also:
// - https://www.freebsd.org/cgi/man.cgi?query=write&sektion=2
// - http://linux.die.net/man/2/writev
break;
}
nioBufferSize += readableBytes;
int count = entry.count;
if (count == -1) {
//noinspection ConstantValueVariableUse
entry.count = count = buf.nioBufferCount();
}
int neededSpace = min(maxCount, nioBufferCount + count);
if (neededSpace > nioBuffers.length) {
nioBuffers = expandNioBufferArray(nioBuffers, neededSpace, nioBufferCount);
NIO_BUFFERS.set(threadLocalMap, nioBuffers);
}
if (count == 1) {
ByteBuffer nioBuf = entry.buf;
if (nioBuf == null) {
// cache ByteBuffer as it may need to create a new ByteBuffer instance if its a
// derived buffer
entry.buf = nioBuf = buf.internalNioBuffer(readerIndex, readableBytes);
}
nioBuffers[nioBufferCount++] = nioBuf;
} else {
ByteBuffer[] nioBufs = entry.bufs;
if (nioBufs == null) {
// cached ByteBuffers as they may be expensive to create in terms
// of Object allocation
entry.bufs = nioBufs = buf.nioBuffers();
}
for (int i = 0; i < nioBufs.length && nioBufferCount < maxCount; ++i) {
ByteBuffer nioBuf = nioBufs[i];
if (nioBuf == null) {
break;
} else if (!nioBuf.hasRemaining()) {
continue;
}
nioBuffers[nioBufferCount++] = nioBuf;
}
}
if (nioBufferCount == maxCount) {
break;
}
}
}
entry = entry.next;
}
this.nioBufferCount = nioBufferCount;
this.nioBufferSize = nioBufferSize;
return nioBuffers;
}
private static ByteBuffer[] expandNioBufferArray(ByteBuffer[] array, int neededSpace, int size) {
int newCapacity = array.length;
do {
// double capacity until it is big enough
// See https://github.com/netty/netty/issues/1890
newCapacity <<= 1;
if (newCapacity < 0) {
throw new IllegalStateException();
}
} while (neededSpace > newCapacity);
ByteBuffer[] newArray = new ByteBuffer[newCapacity];
System.arraycopy(array, 0, newArray, 0, size);
return newArray;
}
Returns the number of ByteBuffer
that can be written out of the ByteBuffer
array that was obtained via nioBuffers()
. This method MUST be called after nioBuffers()
was called. /**
* Returns the number of {@link ByteBuffer} that can be written out of the {@link ByteBuffer} array that was
* obtained via {@link #nioBuffers()}. This method <strong>MUST</strong> be called after {@link #nioBuffers()}
* was called.
*/
public int nioBufferCount() {
return nioBufferCount;
}
Returns the number of bytes that can be written out of the ByteBuffer
array that was obtained via nioBuffers()
. This method MUST be called after nioBuffers()
was called. /**
* Returns the number of bytes that can be written out of the {@link ByteBuffer} array that was
* obtained via {@link #nioBuffers()}. This method <strong>MUST</strong> be called after {@link #nioBuffers()}
* was called.
*/
public long nioBufferSize() {
return nioBufferSize;
}
Returns true
if and only if the total number of pending bytes did not exceed the write watermark of the Channel
and no user-defined writability flag has been set to false
. /**
* Returns {@code true} if and only if {@linkplain #totalPendingWriteBytes() the total number of pending bytes} did
* not exceed the write watermark of the {@link Channel} and
* no {@linkplain #setUserDefinedWritability(int, boolean) user-defined writability flag} has been set to
* {@code false}.
*/
public boolean isWritable() {
return unwritable == 0;
}
Returns true
if and only if the user-defined writability flag at the specified index is set to true
. /**
* Returns {@code true} if and only if the user-defined writability flag at the specified index is set to
* {@code true}.
*/
public boolean getUserDefinedWritability(int index) {
return (unwritable & writabilityMask(index)) == 0;
}
Sets a user-defined writability flag at the specified index.
/**
* Sets a user-defined writability flag at the specified index.
*/
public void setUserDefinedWritability(int index, boolean writable) {
if (writable) {
setUserDefinedWritability(index);
} else {
clearUserDefinedWritability(index);
}
}
private void setUserDefinedWritability(int index) {
final int mask = ~writabilityMask(index);
for (;;) {
final int oldValue = unwritable;
final int newValue = oldValue & mask;
if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
if (oldValue != 0 && newValue == 0) {
fireChannelWritabilityChanged(true);
}
break;
}
}
}
private void clearUserDefinedWritability(int index) {
final int mask = writabilityMask(index);
for (;;) {
final int oldValue = unwritable;
final int newValue = oldValue | mask;
if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
if (oldValue == 0 && newValue != 0) {
fireChannelWritabilityChanged(true);
}
break;
}
}
}
private static int writabilityMask(int index) {
if (index < 1 || index > 31) {
throw new IllegalArgumentException("index: " + index + " (expected: 1~31)");
}
return 1 << index;
}
private void setWritable(boolean invokeLater) {
for (;;) {
final int oldValue = unwritable;
final int newValue = oldValue & ~1;
if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
if (oldValue != 0 && newValue == 0) {
fireChannelWritabilityChanged(invokeLater);
}
break;
}
}
}
private void setUnwritable(boolean invokeLater) {
for (;;) {
final int oldValue = unwritable;
final int newValue = oldValue | 1;
if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
if (oldValue == 0 && newValue != 0) {
fireChannelWritabilityChanged(invokeLater);
}
break;
}
}
}
private void fireChannelWritabilityChanged(boolean invokeLater) {
final ChannelPipeline pipeline = channel.pipeline();
if (invokeLater) {
Runnable task = fireChannelWritabilityChangedTask;
if (task == null) {
fireChannelWritabilityChangedTask = task = new Runnable() {
@Override
public void run() {
pipeline.fireChannelWritabilityChanged();
}
};
}
channel.eventLoop().execute(task);
} else {
pipeline.fireChannelWritabilityChanged();
}
}
Returns the number of flushed messages in this ChannelOutboundBuffer
. /**
* Returns the number of flushed messages in this {@link ChannelOutboundBuffer}.
*/
public int size() {
return flushed;
}
/**
* Returns {@code true} if there are flushed messages in this {@link ChannelOutboundBuffer} or {@code false}
* otherwise.
*/
public boolean isEmpty() {
return flushed == 0;
}
void failFlushed(Throwable cause, boolean notify) {
// Make sure that this method does not reenter. A listener added to the current promise can be notified by the
// current thread in the tryFailure() call of the loop below, and the listener can trigger another fail() call
// indirectly (usually by closing the channel.)
//
// See https://github.com/netty/netty/issues/1501
if (inFail) {
return;
}
try {
inFail = true;
for (;;) {
if (!remove0(cause, notify)) {
break;
}
}
} finally {
inFail = false;
}
}
void close(final Throwable cause, final boolean allowChannelOpen) {
if (inFail) {
channel.eventLoop().execute(new Runnable() {
@Override
public void run() {
close(cause, allowChannelOpen);
}
});
return;
}
inFail = true;
if (!allowChannelOpen && channel.isOpen()) {
throw new IllegalStateException("close() must be invoked after the channel is closed.");
}
if (!isEmpty()) {
throw new IllegalStateException("close() must be invoked after all flushed writes are handled.");
}
// Release all unflushed messages.
try {
Entry e = unflushedEntry;
while (e != null) {
// Just decrease; do not trigger any events via decrementPendingOutboundBytes()
int size = e.pendingSize;
TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, -size);
if (!e.cancelled) {
ReferenceCountUtil.safeRelease(e.msg);
safeFail(e.promise, cause);
}
e = e.recycleAndGetNext();
}
} finally {
inFail = false;
}
clearNioBuffers();
}
void close(ClosedChannelException cause) {
close(cause, false);
}
private static void safeSuccess(ChannelPromise promise) {
// Only log if the given promise is not of type VoidChannelPromise as trySuccess(...) is expected to return
// false.
PromiseNotificationUtil.trySuccess(promise, null, promise instanceof VoidChannelPromise ? null : logger);
}
private static void safeFail(ChannelPromise promise, Throwable cause) {
// Only log if the given promise is not of type VoidChannelPromise as tryFailure(...) is expected to return
// false.
PromiseNotificationUtil.tryFailure(promise, cause, promise instanceof VoidChannelPromise ? null : logger);
}
@Deprecated
public void recycle() {
// NOOP
}
public long totalPendingWriteBytes() {
return totalPendingSize;
}
Get how many bytes can be written until isWritable()
returns false
. This quantity will always be non-negative. If isWritable()
is false
then 0. /**
* Get how many bytes can be written until {@link #isWritable()} returns {@code false}.
* This quantity will always be non-negative. If {@link #isWritable()} is {@code false} then 0.
*/
public long bytesBeforeUnwritable() {
long bytes = channel.config().getWriteBufferHighWaterMark() - totalPendingSize;
// If bytes is negative we know we are not writable, but if bytes is non-negative we have to check writability.
// Note that totalPendingSize and isWritable() use different volatile variables that are not synchronized
// together. totalPendingSize will be updated before isWritable().
if (bytes > 0) {
return isWritable() ? bytes : 0;
}
return 0;
}
Get how many bytes must be drained from the underlying buffer until isWritable()
returns true
. This quantity will always be non-negative. If isWritable()
is true
then 0. /**
* Get how many bytes must be drained from the underlying buffer until {@link #isWritable()} returns {@code true}.
* This quantity will always be non-negative. If {@link #isWritable()} is {@code true} then 0.
*/
public long bytesBeforeWritable() {
long bytes = totalPendingSize - channel.config().getWriteBufferLowWaterMark();
// If bytes is negative we know we are writable, but if bytes is non-negative we have to check writability.
// Note that totalPendingSize and isWritable() use different volatile variables that are not synchronized
// together. totalPendingSize will be updated before isWritable().
if (bytes > 0) {
return isWritable() ? 0 : bytes;
}
return 0;
}
Call MessageProcessor.processMessage(Object)
for each flushed message in this ChannelOutboundBuffer
until MessageProcessor.processMessage(Object)
returns false
or there are no more flushed messages to process. /**
* Call {@link MessageProcessor#processMessage(Object)} for each flushed message
* in this {@link ChannelOutboundBuffer} until {@link MessageProcessor#processMessage(Object)}
* returns {@code false} or there are no more flushed messages to process.
*/
public void forEachFlushedMessage(MessageProcessor processor) throws Exception {
if (processor == null) {
throw new NullPointerException("processor");
}
Entry entry = flushedEntry;
if (entry == null) {
return;
}
do {
if (!entry.cancelled) {
if (!processor.processMessage(entry.msg)) {
return;
}
}
entry = entry.next;
} while (isFlushedEntry(entry));
}
private boolean isFlushedEntry(Entry e) {
return e != null && e != unflushedEntry;
}
public interface MessageProcessor {
Will be called for each flushed message until it either there are no more flushed messages or this method returns false
. /**
* Will be called for each flushed message until it either there are no more flushed messages or this
* method returns {@code false}.
*/
boolean processMessage(Object msg) throws Exception;
}
static final class Entry {
private static final Recycler<Entry> RECYCLER = new Recycler<Entry>() {
@Override
protected Entry newObject(Handle<Entry> handle) {
return new Entry(handle);
}
};
private final Handle<Entry> handle;
Entry next;
Object msg;
ByteBuffer[] bufs;
ByteBuffer buf;
ChannelPromise promise;
long progress;
long total;
int pendingSize;
int count = -1;
boolean cancelled;
private Entry(Handle<Entry> handle) {
this.handle = handle;
}
static Entry newInstance(Object msg, int size, long total, ChannelPromise promise) {
Entry entry = RECYCLER.get();
entry.msg = msg;
entry.pendingSize = size + CHANNEL_OUTBOUND_BUFFER_ENTRY_OVERHEAD;
entry.total = total;
entry.promise = promise;
return entry;
}
int cancel() {
if (!cancelled) {
cancelled = true;
int pSize = pendingSize;
// release message and replace with an empty buffer
ReferenceCountUtil.safeRelease(msg);
msg = Unpooled.EMPTY_BUFFER;
pendingSize = 0;
total = 0;
progress = 0;
bufs = null;
buf = null;
return pSize;
}
return 0;
}
void recycle() {
next = null;
bufs = null;
buf = null;
msg = null;
promise = null;
progress = 0;
total = 0;
pendingSize = 0;
count = -1;
cancelled = false;
handle.recycle(this);
}
Entry recycleAndGetNext() {
Entry next = this.next;
recycle();
return next;
}
}
}