package io.ebeaninternal.server.cache;

import io.ebean.BackgroundExecutor;
import io.ebean.cache.ServerCache;
import io.ebean.cache.ServerCacheStatistics;
import io.ebean.cache.TenantAwareKey;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.LongAdder;

The default cache implementation.

It is base on ConcurrentHashMap with periodic trimming using a TimerTask. The periodic trimming means that an LRU list does not have to be maintained.

/** * The default cache implementation. * <p> * It is base on ConcurrentHashMap with periodic trimming using a TimerTask. * The periodic trimming means that an LRU list does not have to be maintained. * </p> */
public class DefaultServerCache implements ServerCache { protected static final Logger logger = LoggerFactory.getLogger(DefaultServerCache.class);
Compare by last access time (for LRU eviction).
/** * Compare by last access time (for LRU eviction). */
public static final CompareByLastAccess BY_LAST_ACCESS = new CompareByLastAccess();
The underlying map (ConcurrentHashMap or similar)
/** * The underlying map (ConcurrentHashMap or similar) */
protected final Map<Object, CacheEntry> map; protected final LongAdder missCount = new LongAdder(); protected final LongAdder hitCount = new LongAdder(); protected final LongAdder insertCount = new LongAdder(); protected final LongAdder updateCount = new LongAdder(); protected final LongAdder removeCount = new LongAdder(); protected final LongAdder clearCount = new LongAdder(); protected final LongAdder evictByIdle = new LongAdder(); protected final LongAdder evictByTTL = new LongAdder(); protected final LongAdder evictByLRU = new LongAdder(); protected final LongAdder evictCount = new LongAdder(); protected final LongAdder evictMicros = new LongAdder(); protected final String name; protected int maxSize; protected final int trimFrequency; protected int maxIdleSecs; protected int maxSecsToLive; protected TenantAwareKey tenantAwareKey; public DefaultServerCache(DefaultServerCacheConfig config) { this.name = config.getName(); this.map = config.getMap(); this.maxSize = config.getMaxSize(); this.tenantAwareKey = new TenantAwareKey(config.getTenantProvider()); this.maxIdleSecs = config.getMaxIdleSecs(); this.maxSecsToLive = config.getMaxSecsToLive(); this.trimFrequency = config.determineTrimFrequency(); } public void periodicTrim(BackgroundExecutor executor) { EvictionRunnable trim = new EvictionRunnable(); // default to trimming the cache every 60 seconds long trimFreqSecs = (trimFrequency == 0) ? 60 : trimFrequency; executor.executePeriodically(trim, trimFreqSecs, TimeUnit.SECONDS); } @Override public ServerCacheStatistics getStatistics(boolean reset) { ServerCacheStatistics cacheStats = new ServerCacheStatistics(); cacheStats.setCacheName(name); cacheStats.setMaxSize(maxSize); // these counters won't necessarily be consistent with // respect to each other as activity can occur while // they are being calculated here but they should be good enough // and we don't want to reduce concurrent use to make them consistent long clear = reset ? clearCount.sumThenReset() : clearCount.sum(); long remove = reset ? removeCount.sumThenReset() : removeCount.sum(); long update = reset ? updateCount.sumThenReset() : updateCount.sum(); long insert = reset ? insertCount.sumThenReset() : insertCount.sum(); long miss = reset ? missCount.sumThenReset() : missCount.sum(); long hit = reset ? hitCount.sumThenReset() : hitCount.sum(); long evict = reset ? evictCount.sumThenReset() : evictCount.sum(); long evictTime = reset ? evictMicros.sumThenReset() : evictMicros.sum(); long evictIdle = reset ? evictByIdle.sumThenReset() : evictByIdle.sum(); long evictTTL = reset ? evictByTTL.sumThenReset() : evictByTTL.sum(); long evictLRU = reset ? evictByLRU.sumThenReset() : evictByLRU.sum(); int size = size(); cacheStats.setSize(size); cacheStats.setHitCount(hit); cacheStats.setMissCount(miss); cacheStats.setInsertCount(insert); cacheStats.setUpdateCount(update); cacheStats.setRemoveCount(remove); cacheStats.setClearCount(clear); cacheStats.setEvictionRunCount(evict); cacheStats.setEvictionRunMicros(evictTime); cacheStats.setEvictByIdle(evictIdle); cacheStats.setEvictByTTL(evictTTL); cacheStats.setEvictByLRU(evictLRU); return cacheStats; } @Override public int getHitRatio() { long mc = missCount.sum(); long hc = hitCount.sum(); long totalCount = hc + mc; if (totalCount == 0) { return 0; } else { return (int) (hc * 100 / totalCount); } }
Return the name of the cache.
/** * Return the name of the cache. */
public String getName() { return name; }
Clear the cache.
/** * Clear the cache. */
@Override public void clear() { clearCount.increment(); map.clear(); }
Return the tenant aware key.
/** * Return the tenant aware key. */
protected Object key(Object id) { return tenantAwareKey.key(id); }
Return a value from the cache.
/** * Return a value from the cache. */
@Override public Object get(Object id) { CacheEntry entry = getCacheEntry(id); if (entry == null) { missCount.increment(); return null; } else { // Important that hitCount.increment() MUST be low latency under concurrent // use hence must use LongAdder or better here hitCount.increment(); return unwrapEntry(entry); } }
Unwrap the cache entry - override for query cache to unwrap to the query result.
/** * Unwrap the cache entry - override for query cache to unwrap to the query result. */
protected Object unwrapEntry(CacheEntry entry) { return entry.getValue(); }
Get the cache entry - override for query cache to validate dependent tables.
/** * Get the cache entry - override for query cache to validate dependent tables. */
protected CacheEntry getCacheEntry(Object id) { return map.get(key(id)); } @Override public void putAll(Map<Object, Object> keyValues) { keyValues.forEach(this::put); }
Put a value into the cache.
/** * Put a value into the cache. */
@Override public void put(Object id, Object value) { Object key = key(id); CacheEntry entry = map.put(key, new CacheEntry(key, value)); if (entry == null) { insertCount.increment(); } else { updateCount.increment(); } }
Remove an entry from the cache.
/** * Remove an entry from the cache. */
@Override public void remove(Object id) { CacheEntry entry = map.remove(key(id)); if (entry != null) { removeCount.increment(); } }
Return the number of elements in the cache.
/** * Return the number of elements in the cache. */
@Override public int size() { return map.size(); }
Return the size to trim to based on the max size.

This returns 90% of the max size.

/** * Return the size to trim to based on the max size. * <p> * This returns 90% of the max size. * </p> */
protected int getTrimSize() { return (maxSize * 90 / 100); }
Run the eviction based on Idle time, Time to live and LRU last access.
/** * Run the eviction based on Idle time, Time to live and LRU last access. */
public void runEviction() { long trimForMaxSize; if (maxSize == 0) { trimForMaxSize = 0; } else { trimForMaxSize = size() - maxSize; } if (maxIdleSecs == 0 && maxSecsToLive == 0 && trimForMaxSize < 0) { // nothing to trim on this cache return; } long startNanos = System.nanoTime(); long trimmedByIdle = 0; long trimmedByTTL = 0; long trimmedByLRU = 0; List<CacheEntry> activeList = new ArrayList<>(map.size()); long idleExpireNano = startNanos - TimeUnit.SECONDS.toNanos(maxIdleSecs); long ttlExpireNano = startNanos - TimeUnit.SECONDS.toNanos(maxSecsToLive); Iterator<CacheEntry> it = map.values().iterator(); while (it.hasNext()) { CacheEntry cacheEntry = it.next(); if (maxIdleSecs > 0 && idleExpireNano > cacheEntry.getLastAccessTime()) { it.remove(); trimmedByIdle++; } else if (maxSecsToLive > 0 && ttlExpireNano > cacheEntry.getCreateTime()) { it.remove(); trimmedByTTL++; } else if (trimForMaxSize > 0) { activeList.add(cacheEntry); } } if (trimForMaxSize > 0) { trimmedByLRU = activeList.size() - maxSize; if (trimmedByLRU > 0) { // sort into last access time ascending activeList.sort(BY_LAST_ACCESS); int trimSize = getTrimSize(); for (int i = trimSize; i < activeList.size(); i++) { // remove if still in the cache map.remove(activeList.get(i).getKey()); } } } long exeNanos = System.nanoTime() - startNanos; long exeMicros = TimeUnit.MICROSECONDS.convert(exeNanos, TimeUnit.NANOSECONDS); // increment the eviction statistics evictMicros.add(exeMicros); evictCount.increment(); evictByIdle.add(trimmedByIdle); evictByTTL.add(trimmedByTTL); evictByLRU.add(trimmedByLRU); if (logger.isTraceEnabled()) { logger.trace("Executed trim of cache {} in [{}]millis idle[{}] timeToLive[{}] accessTime[{}]" , name, exeMicros, trimmedByIdle, trimmedByTTL, trimmedByLRU); } }
Runnable that calls the eviction routine.
/** * Runnable that calls the eviction routine. */
public class EvictionRunnable implements Runnable { @Override public void run() { runEviction(); } }
Comparator for sorting by last access time.
/** * Comparator for sorting by last access time. */
public static class CompareByLastAccess implements Comparator<CacheEntry>, Serializable { private static final long serialVersionUID = 1L; @Override public int compare(CacheEntry e1, CacheEntry e2) { return Long.compare(e1.getLastAccessTime(), e2.getLastAccessTime()); } }
Wraps the value to additionally hold createTime and lastAccessTime and hit counter.
/** * Wraps the value to additionally hold createTime and lastAccessTime and hit counter. */
public static class CacheEntry { private final Object key; private final Object value; private final long createTime; private long lastAccessTime; public CacheEntry(Object key, Object value) { this.key = key; this.value = value; this.createTime = System.nanoTime(); this.lastAccessTime = createTime; }
Return the entry key.
/** * Return the entry key. */
public Object getKey() { return key; }
Return the entry value.
/** * Return the entry value. */
public Object getValue() { // long assignment should be atomic these days (Ref Cliff Click) lastAccessTime = System.nanoTime(); return value; }
Return the time the entry was created.
/** * Return the time the entry was created. */
public long getCreateTime() { return createTime; }
Return the time the entry was last accessed.
/** * Return the time the entry was last accessed. */
public long getLastAccessTime() { return lastAccessTime; } } }