/*
* Copyright (c) 2018, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* The Universal Permissive License (UPL), Version 1.0
*
* Subject to the condition set forth below, permission is hereby granted to any
* person obtaining a copy of this software, associated documentation and/or
* data (collectively the "Software"), free of charge and under any and all
* copyright rights in the Software, and any and all patent rights owned or
* freely licensable by each licensor hereunder covering either (i) the
* unmodified Software as contributed to or provided by such licensor, or (ii)
* the Larger Works (as defined below), to deal in both
*
* (a) the Software, and
*
* (b) any piece of software and/or hardware listed in the lrgrwrks.txt file if
* one is included with the Software each a "Larger Work" to which the Software
* is contributed by such licensors),
*
* without restriction, including without limitation the rights to copy, create
* derivative works of, display, perform, and distribute the Software and make,
* use, sell, offer for sale, import, export, have made, and have sold the
* Software and the Larger Work(s), and to sublicense the foregoing rights on
* either these or other terms.
*
* This license is subject to the following condition:
*
* The above copyright notice and either this complete permission notice or at a
* minimum a reference to the UPL must be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package com.oracle.truffle.js.runtime.doubleconv;
// @formatter:off
// Helper functions for doubles.
@SuppressWarnings("all")
class IeeeDouble {
// We assume that doubles and long have the same endianness.
static long doubleToLong(final double d) { return Double.doubleToRawLongBits(d); }
static double longToDouble(final long d64) { return Double.longBitsToDouble(d64); }
static final long kSignMask = 0x8000000000000000L;
static final long kExponentMask = 0x7FF0000000000000L;
static final long kSignificandMask = 0x000FFFFFFFFFFFFFL;
static final long kHiddenBit = 0x0010000000000000L;
static final int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
static final int kSignificandSize = 53;
static private final int kExponentBias = 0x3FF + kPhysicalSignificandSize;
static private final int kDenormalExponent = -kExponentBias + 1;
static private final int kMaxExponent = 0x7FF - kExponentBias;
static private final long kInfinity = 0x7FF0000000000000L;
static private final long kNaN = 0x7FF8000000000000L;
static DiyFp asDiyFp(final long d64) {
assert (!isSpecial(d64));
return new DiyFp(significand(d64), exponent(d64));
}
// The value encoded by this Double must be strictly greater than 0.
static DiyFp asNormalizedDiyFp(final long d64) {
assert (value(d64) > 0.0);
long f = significand(d64);
int e = exponent(d64);
// The current double could be a denormal.
while ((f & kHiddenBit) == 0) {
f <<= 1;
e--;
}
// Do the final shifts in one go.
f <<= DiyFp.kSignificandSize - kSignificandSize;
e -= DiyFp.kSignificandSize - kSignificandSize;
return new DiyFp(f, e);
}
// Returns the next greater double. Returns +infinity on input +infinity.
static double nextDouble(final long d64) {
if (d64 == kInfinity) return longToDouble(kInfinity);
if (sign(d64) < 0 && significand(d64) == 0) {
// -0.0
return 0.0;
}
if (sign(d64) < 0) {
return longToDouble(d64 - 1);
} else {
return longToDouble(d64 + 1);
}
}
static double previousDouble(final long d64) {
if (d64 == (kInfinity | kSignMask)) return -longToDouble(kInfinity);
if (sign(d64) < 0) {
return longToDouble(d64 + 1);
} else {
if (significand(d64) == 0) return -0.0;
return longToDouble(d64 - 1);
}
}
static int exponent(final long d64) {
if (isDenormal(d64)) return kDenormalExponent;
final int biased_e = (int) ((d64 & kExponentMask) >>> kPhysicalSignificandSize);
return biased_e - kExponentBias;
}
static long significand(final long d64) {
final long significand = d64 & kSignificandMask;
if (!isDenormal(d64)) {
return significand + kHiddenBit;
} else {
return significand;
}
}
// Returns true if the double is a denormal.
static boolean isDenormal(final long d64) {
return (d64 & kExponentMask) == 0L;
}
// We consider denormals not to be special.
// Hence only Infinity and NaN are special.
static boolean isSpecial(final long d64) {
return (d64 & kExponentMask) == kExponentMask;
}
static boolean isNaN(final long d64) {
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) != 0L);
}
static boolean isInfinite(final long d64) {
return ((d64 & kExponentMask) == kExponentMask) &&
((d64 & kSignificandMask) == 0L);
}
static int sign(final long d64) {
return (d64 & kSignMask) == 0L ? 1 : -1;
}
// Computes the two boundaries of this.
// The bigger boundary (m_plus) is normalized. The lower boundary has the same
// exponent as m_plus.
// Precondition: the value encoded by this Double must be greater than 0.
static void normalizedBoundaries(final long d64, final DiyFp m_minus, final DiyFp m_plus) {
assert (value(d64) > 0.0);
final DiyFp v = asDiyFp(d64);
m_plus.setF((v.f() << 1) + 1);
m_plus.setE(v.e() - 1);
m_plus.normalize();
if (lowerBoundaryIsCloser(d64)) {
m_minus.setF((v.f() << 2) - 1);
m_minus.setE(v.e() - 2);
} else {
m_minus.setF((v.f() << 1) - 1);
m_minus.setE(v.e() - 1);
}
m_minus.setF(m_minus.f() << (m_minus.e() - m_plus.e()));
m_minus.setE(m_plus.e());
}
static boolean lowerBoundaryIsCloser(final long d64) {
// The boundary is closer if the significand is of the form f == 2^p-1 then
// the lower boundary is closer.
// Think of v = 1000e10 and v- = 9999e9.
// Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
// at a distance of 1e8.
// The only exception is for the smallest normal: the largest denormal is
// at the same distance as its successor.
// Note: denormals have the same exponent as the smallest normals.
final boolean physical_significand_is_zero = ((d64 & kSignificandMask) == 0);
return physical_significand_is_zero && (exponent(d64) != kDenormalExponent);
}
static double value(final long d64) {
return longToDouble(d64);
}
// Returns the significand size for a given order of magnitude.
// If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
// This function returns the number of significant binary digits v will have
// once it's encoded into a double. In almost all cases this is equal to
// kSignificandSize. The only exceptions are denormals. They start with
// leading zeroes and their effective significand-size is hence smaller.
static int significandSizeForOrderOfMagnitude(final int order) {
if (order >= (kDenormalExponent + kSignificandSize)) {
return kSignificandSize;
}
if (order <= kDenormalExponent) return 0;
return order - kDenormalExponent;
}
static double Infinity() {
return longToDouble(kInfinity);
}
static double NaN() {
return longToDouble(kNaN);
}
}