// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

import java.io.IOException;
import java.lang.reflect.Method;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.util.AbstractList;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.RandomAccess;
import java.util.Set;

The classes contained within are used internally by the Protocol Buffer library and generated message implementations. They are public only because those generated messages do not reside in the protobuf package. Others should not use this class directly.
Author:kenton@google.com (Kenton Varda)
/** * The classes contained within are used internally by the Protocol Buffer library and generated * message implementations. They are public only because those generated messages do not reside in * the {@code protobuf} package. Others should not use this class directly. * * @author kenton@google.com (Kenton Varda) */
public final class Internal { private Internal() {} static final Charset UTF_8 = Charset.forName("UTF-8"); static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1");
Throws an appropriate NullPointerException if the given objects is null.
/** Throws an appropriate {@link NullPointerException} if the given objects is {@code null}. */
static <T> T checkNotNull(T obj) { if (obj == null) { throw new NullPointerException(); } return obj; }
Throws an appropriate NullPointerException if the given objects is null.
/** Throws an appropriate {@link NullPointerException} if the given objects is {@code null}. */
static <T> T checkNotNull(T obj, String message) { if (obj == null) { throw new NullPointerException(message); } return obj; }
Helper called by generated code to construct default values for string fields.

The protocol compiler does not actually contain a UTF-8 decoder -- it just pushes UTF-8-encoded text around without touching it. The one place where this presents a problem is when generating Java string literals. Unicode characters in the string literal would normally need to be encoded using a Unicode escape sequence, which would require decoding them. To get around this, protoc instead embeds the UTF-8 bytes into the generated code and leaves it to the runtime library to decode them.

It gets worse, though. If protoc just generated a byte array, like: new byte[] {0x12, 0x34, 0x56, 0x78} Java actually generates *code* which allocates an array and then fills in each value. This is much less efficient than just embedding the bytes directly into the bytecode. To get around this, we need another work-around. String literals are embedded directly, so protoc actually generates a string literal corresponding to the bytes. The easiest way to do this is to use the ISO-8859-1 character set, which corresponds to the first 256 characters of the Unicode range. Protoc can then use good old CEscape to generate the string.

So we have a string literal which represents a set of bytes which represents another string. This function -- stringDefaultValue -- converts from the generated string to the string we actually want. The generated code calls this automatically.

/** * Helper called by generated code to construct default values for string fields. * * <p>The protocol compiler does not actually contain a UTF-8 decoder -- it just pushes * UTF-8-encoded text around without touching it. The one place where this presents a problem is * when generating Java string literals. Unicode characters in the string literal would normally * need to be encoded using a Unicode escape sequence, which would require decoding them. To get * around this, protoc instead embeds the UTF-8 bytes into the generated code and leaves it to the * runtime library to decode them. * * <p>It gets worse, though. If protoc just generated a byte array, like: new byte[] {0x12, 0x34, * 0x56, 0x78} Java actually generates *code* which allocates an array and then fills in each * value. This is much less efficient than just embedding the bytes directly into the bytecode. To * get around this, we need another work-around. String literals are embedded directly, so protoc * actually generates a string literal corresponding to the bytes. The easiest way to do this is * to use the ISO-8859-1 character set, which corresponds to the first 256 characters of the * Unicode range. Protoc can then use good old CEscape to generate the string. * * <p>So we have a string literal which represents a set of bytes which represents another string. * This function -- stringDefaultValue -- converts from the generated string to the string we * actually want. The generated code calls this automatically. */
public static String stringDefaultValue(String bytes) { return new String(bytes.getBytes(ISO_8859_1), UTF_8); }
Helper called by generated code to construct default values for bytes fields.

This is a lot like stringDefaultValue, but for bytes fields. In this case we only need the second of the two hacks -- allowing us to embed raw bytes as a string literal with ISO-8859-1 encoding.

/** * Helper called by generated code to construct default values for bytes fields. * * <p>This is a lot like {@link #stringDefaultValue}, but for bytes fields. In this case we only * need the second of the two hacks -- allowing us to embed raw bytes as a string literal with * ISO-8859-1 encoding. */
public static ByteString bytesDefaultValue(String bytes) { return ByteString.copyFrom(bytes.getBytes(ISO_8859_1)); }
Helper called by generated code to construct default values for bytes fields.

This is like bytesDefaultValue, but returns a byte array.

/** * Helper called by generated code to construct default values for bytes fields. * * <p>This is like {@link #bytesDefaultValue}, but returns a byte array. */
public static byte[] byteArrayDefaultValue(String bytes) { return bytes.getBytes(ISO_8859_1); }
Helper called by generated code to construct default values for bytes fields.

This is like bytesDefaultValue, but returns a ByteBuffer.

/** * Helper called by generated code to construct default values for bytes fields. * * <p>This is like {@link #bytesDefaultValue}, but returns a ByteBuffer. */
public static ByteBuffer byteBufferDefaultValue(String bytes) { return ByteBuffer.wrap(byteArrayDefaultValue(bytes)); }
Create a new ByteBuffer and copy all the content of source ByteBuffer to the new ByteBuffer. The new ByteBuffer's limit and capacity will be source.capacity(), and its position will be 0. Note that the state of source ByteBuffer won't be changed.
/** * Create a new ByteBuffer and copy all the content of {@code source} ByteBuffer to the new * ByteBuffer. The new ByteBuffer's limit and capacity will be source.capacity(), and its position * will be 0. Note that the state of {@code source} ByteBuffer won't be changed. */
public static ByteBuffer copyByteBuffer(ByteBuffer source) { // Make a duplicate of the source ByteBuffer and read data from the // duplicate. This is to avoid affecting the source ByteBuffer's state. ByteBuffer temp = source.duplicate(); // We want to copy all the data in the source ByteBuffer, not just the // remaining bytes. temp.clear(); ByteBuffer result = ByteBuffer.allocate(temp.capacity()); result.put(temp); result.clear(); return result; }
Helper called by generated code to determine if a byte array is a valid UTF-8 encoded string such that the original bytes can be converted to a String object and then back to a byte array round tripping the bytes without loss. More precisely, returns true whenever:

Arrays.equals(byteString.toByteArray(),
    new String(byteString.toByteArray(), "UTF-8").getBytes("UTF-8"))

This method rejects "overlong" byte sequences, as well as 3-byte sequences that would map to a surrogate character, in accordance with the restricted definition of UTF-8 introduced in Unicode 3.1. Note that the UTF-8 decoder included in Oracle's JDK has been modified to also reject "overlong" byte sequences, but currently (2011) still accepts 3-byte surrogate character byte sequences.

See the Unicode Standard,
Table 3-6. UTF-8 Bit Distribution,
Table 3-7. Well Formed UTF-8 Byte Sequences.

As of 2011-02, this method simply returns the result of ByteString.isValidUtf8(). Calling that method directly is preferred.

Params:
  • byteString – the string to check
Returns:whether the byte array is round trippable
/** * Helper called by generated code to determine if a byte array is a valid UTF-8 encoded string * such that the original bytes can be converted to a String object and then back to a byte array * round tripping the bytes without loss. More precisely, returns {@code true} whenever: * * <pre>{@code * Arrays.equals(byteString.toByteArray(), * new String(byteString.toByteArray(), "UTF-8").getBytes("UTF-8")) * }</pre> * * <p>This method rejects "overlong" byte sequences, as well as 3-byte sequences that would map to * a surrogate character, in accordance with the restricted definition of UTF-8 introduced in * Unicode 3.1. Note that the UTF-8 decoder included in Oracle's JDK has been modified to also * reject "overlong" byte sequences, but currently (2011) still accepts 3-byte surrogate character * byte sequences. * * <p>See the Unicode Standard,<br> * Table 3-6. <em>UTF-8 Bit Distribution</em>,<br> * Table 3-7. <em>Well Formed UTF-8 Byte Sequences</em>. * * <p>As of 2011-02, this method simply returns the result of {@link ByteString#isValidUtf8()}. * Calling that method directly is preferred. * * @param byteString the string to check * @return whether the byte array is round trippable */
public static boolean isValidUtf8(ByteString byteString) { return byteString.isValidUtf8(); }
Like isValidUtf8(ByteString) but for byte arrays.
/** Like {@link #isValidUtf8(ByteString)} but for byte arrays. */
public static boolean isValidUtf8(byte[] byteArray) { return Utf8.isValidUtf8(byteArray); }
Helper method to get the UTF-8 bytes of a string.
/** Helper method to get the UTF-8 bytes of a string. */
public static byte[] toByteArray(String value) { return value.getBytes(UTF_8); }
Helper method to convert a byte array to a string using UTF-8 encoding.
/** Helper method to convert a byte array to a string using UTF-8 encoding. */
public static String toStringUtf8(byte[] bytes) { return new String(bytes, UTF_8); }
Interface for an enum value or value descriptor, to be used in FieldSet. The lite library stores enum values directly in FieldSets but the full library stores EnumValueDescriptors in order to better support reflection.
/** * Interface for an enum value or value descriptor, to be used in FieldSet. The lite library * stores enum values directly in FieldSets but the full library stores EnumValueDescriptors in * order to better support reflection. */
public interface EnumLite { int getNumber(); }
Interface for an object which maps integers to EnumLites. EnumDescriptor implements this interface by mapping numbers to EnumValueDescriptors. Additionally, every generated enum type has a static method internalGetValueMap() which returns an implementation of this type that maps numbers to enum values.
/** * Interface for an object which maps integers to {@link EnumLite}s. {@link * Descriptors.EnumDescriptor} implements this interface by mapping numbers to {@link * Descriptors.EnumValueDescriptor}s. Additionally, every generated enum type has a static method * internalGetValueMap() which returns an implementation of this type that maps numbers to enum * values. */
public interface EnumLiteMap<T extends EnumLite> { T findValueByNumber(int number); }
Interface for an object which verifies integers are in range.
/** Interface for an object which verifies integers are in range. */
public interface EnumVerifier { boolean isInRange(int number); }
Helper method for implementing Message.hashCode() for longs.
See Also:
/** * Helper method for implementing {@link Message#hashCode()} for longs. * * @see Long#hashCode() */
public static int hashLong(long n) { return (int) (n ^ (n >>> 32)); }
Helper method for implementing Message.hashCode() for booleans.
See Also:
/** * Helper method for implementing {@link Message#hashCode()} for booleans. * * @see Boolean#hashCode() */
public static int hashBoolean(boolean b) { return b ? 1231 : 1237; }
Helper method for implementing Message.hashCode() for enums.

This is needed because Enum.hashCode() is final, but we need to use the field number as the hash code to ensure compatibility between statically and dynamically generated enum objects.

/** * Helper method for implementing {@link Message#hashCode()} for enums. * * <p>This is needed because {@link java.lang.Enum#hashCode()} is final, but we need to use the * field number as the hash code to ensure compatibility between statically and dynamically * generated enum objects. */
public static int hashEnum(EnumLite e) { return e.getNumber(); }
Helper method for implementing Message.hashCode() for enum lists.
/** Helper method for implementing {@link Message#hashCode()} for enum lists. */
public static int hashEnumList(List<? extends EnumLite> list) { int hash = 1; for (EnumLite e : list) { hash = 31 * hash + hashEnum(e); } return hash; }
Helper method for implementing Message.equals(Object) for bytes field.
/** Helper method for implementing {@link Message#equals(Object)} for bytes field. */
public static boolean equals(List<byte[]> a, List<byte[]> b) { if (a.size() != b.size()) return false; for (int i = 0; i < a.size(); ++i) { if (!Arrays.equals(a.get(i), b.get(i))) { return false; } } return true; }
Helper method for implementing Message.hashCode() for bytes field.
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCode(List<byte[]> list) { int hash = 1; for (byte[] bytes : list) { hash = 31 * hash + hashCode(bytes); } return hash; }
Helper method for implementing Message.hashCode() for bytes field.
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCode(byte[] bytes) { // The hash code for a byte array should be the same as the hash code for a // ByteString with the same content. This is to ensure that the generated // hashCode() method will return the same value as the pure reflection // based hashCode() method. return Internal.hashCode(bytes, 0, bytes.length); }
Helper method for implementing hashCode.hashCode().
/** Helper method for implementing {@link LiteralByteString#hashCode()}. */
static int hashCode(byte[] bytes, int offset, int length) { // The hash code for a byte array should be the same as the hash code for a // ByteString with the same content. This is to ensure that the generated // hashCode() method will return the same value as the pure reflection // based hashCode() method. int h = Internal.partialHash(length, bytes, offset, length); return h == 0 ? 1 : h; }
Helper method for continuously hashing bytes.
/** Helper method for continuously hashing bytes. */
static int partialHash(int h, byte[] bytes, int offset, int length) { for (int i = offset; i < offset + length; i++) { h = h * 31 + bytes[i]; } return h; }
Helper method for implementing Message.equals(Object) for bytes field.
/** Helper method for implementing {@link Message#equals(Object)} for bytes field. */
public static boolean equalsByteBuffer(ByteBuffer a, ByteBuffer b) { if (a.capacity() != b.capacity()) { return false; } // ByteBuffer.equals() will only compare the remaining bytes, but we want to // compare all the content. return a.duplicate().clear().equals(b.duplicate().clear()); }
Helper method for implementing Message.equals(Object) for bytes field.
/** Helper method for implementing {@link Message#equals(Object)} for bytes field. */
public static boolean equalsByteBuffer(List<ByteBuffer> a, List<ByteBuffer> b) { if (a.size() != b.size()) { return false; } for (int i = 0; i < a.size(); ++i) { if (!equalsByteBuffer(a.get(i), b.get(i))) { return false; } } return true; }
Helper method for implementing Message.hashCode() for bytes field.
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCodeByteBuffer(List<ByteBuffer> list) { int hash = 1; for (ByteBuffer bytes : list) { hash = 31 * hash + hashCodeByteBuffer(bytes); } return hash; } private static final int DEFAULT_BUFFER_SIZE = 4096;
Helper method for implementing Message.hashCode() for bytes field.
/** Helper method for implementing {@link Message#hashCode()} for bytes field. */
public static int hashCodeByteBuffer(ByteBuffer bytes) { if (bytes.hasArray()) { // Fast path. int h = partialHash(bytes.capacity(), bytes.array(), bytes.arrayOffset(), bytes.capacity()); return h == 0 ? 1 : h; } else { // Read the data into a temporary byte array before calculating the // hash value. final int bufferSize = bytes.capacity() > DEFAULT_BUFFER_SIZE ? DEFAULT_BUFFER_SIZE : bytes.capacity(); final byte[] buffer = new byte[bufferSize]; final ByteBuffer duplicated = bytes.duplicate(); duplicated.clear(); int h = bytes.capacity(); while (duplicated.remaining() > 0) { final int length = duplicated.remaining() <= bufferSize ? duplicated.remaining() : bufferSize; duplicated.get(buffer, 0, length); h = partialHash(h, buffer, 0, length); } return h == 0 ? 1 : h; } } @SuppressWarnings("unchecked") public static <T extends MessageLite> T getDefaultInstance(Class<T> clazz) { try { Method method = clazz.getMethod("getDefaultInstance"); return (T) method.invoke(method); } catch (Exception e) { throw new RuntimeException("Failed to get default instance for " + clazz, e); } }
An empty byte array constant used in generated code.
/** An empty byte array constant used in generated code. */
public static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
An empty byte array constant used in generated code.
/** An empty byte array constant used in generated code. */
public static final ByteBuffer EMPTY_BYTE_BUFFER = ByteBuffer.wrap(EMPTY_BYTE_ARRAY);
An empty coded input stream constant used in generated code.
/** An empty coded input stream constant used in generated code. */
public static final CodedInputStream EMPTY_CODED_INPUT_STREAM = CodedInputStream.newInstance(EMPTY_BYTE_ARRAY);
Helper method to merge two MessageLite instances.
/** Helper method to merge two MessageLite instances. */
static Object mergeMessage(Object destination, Object source) { return ((MessageLite) destination).toBuilder().mergeFrom((MessageLite) source).buildPartial(); }
Provides an immutable view of List<T> around a List<F>.

Protobuf internal. Used in protobuf generated code only.

/** * Provides an immutable view of {@code List<T>} around a {@code List<F>}. * * <p>Protobuf internal. Used in protobuf generated code only. */
public static class ListAdapter<F, T> extends AbstractList<T> {
Convert individual elements of the List from F to T.
/** Convert individual elements of the List from F to T. */
public interface Converter<F, T> { T convert(F from); } private final List<F> fromList; private final Converter<F, T> converter; public ListAdapter(List<F> fromList, Converter<F, T> converter) { this.fromList = fromList; this.converter = converter; } @Override public T get(int index) { return converter.convert(fromList.get(index)); } @Override public int size() { return fromList.size(); } }
Wrap around a Map<K, RealValue> and provide a Map<K, V> interface.
/** Wrap around a {@code Map<K, RealValue>} and provide a {@code Map<K, V>} interface. */
public static class MapAdapter<K, V, RealValue> extends AbstractMap<K, V> {
An interface used to convert between two types.
/** An interface used to convert between two types. */
public interface Converter<A, B> { B doForward(A object); A doBackward(B object); } public static <T extends EnumLite> Converter<Integer, T> newEnumConverter( final EnumLiteMap<T> enumMap, final T unrecognizedValue) { return new Converter<Integer, T>() { @Override public T doForward(Integer value) { T result = enumMap.findValueByNumber(value); return result == null ? unrecognizedValue : result; } @Override public Integer doBackward(T value) { return value.getNumber(); } }; } private final Map<K, RealValue> realMap; private final Converter<RealValue, V> valueConverter; public MapAdapter(Map<K, RealValue> realMap, Converter<RealValue, V> valueConverter) { this.realMap = realMap; this.valueConverter = valueConverter; } @SuppressWarnings("unchecked") @Override public V get(Object key) { RealValue result = realMap.get(key); if (result == null) { return null; } return valueConverter.doForward(result); } @Override public V put(K key, V value) { RealValue oldValue = realMap.put(key, valueConverter.doBackward(value)); if (oldValue == null) { return null; } return valueConverter.doForward(oldValue); } @Override public Set<java.util.Map.Entry<K, V>> entrySet() { return new SetAdapter(realMap.entrySet()); } private class SetAdapter extends AbstractSet<Map.Entry<K, V>> { private final Set<Map.Entry<K, RealValue>> realSet; public SetAdapter(Set<Map.Entry<K, RealValue>> realSet) { this.realSet = realSet; } @Override public Iterator<java.util.Map.Entry<K, V>> iterator() { return new IteratorAdapter(realSet.iterator()); } @Override public int size() { return realSet.size(); } } private class IteratorAdapter implements Iterator<Map.Entry<K, V>> { private final Iterator<Map.Entry<K, RealValue>> realIterator; public IteratorAdapter(Iterator<Map.Entry<K, RealValue>> realIterator) { this.realIterator = realIterator; } @Override public boolean hasNext() { return realIterator.hasNext(); } @Override public java.util.Map.Entry<K, V> next() { return new EntryAdapter(realIterator.next()); } @Override public void remove() { realIterator.remove(); } } private class EntryAdapter implements Map.Entry<K, V> { private final Map.Entry<K, RealValue> realEntry; public EntryAdapter(Map.Entry<K, RealValue> realEntry) { this.realEntry = realEntry; } @Override public K getKey() { return realEntry.getKey(); } @Override public V getValue() { return valueConverter.doForward(realEntry.getValue()); } @Override public V setValue(V value) { RealValue oldValue = realEntry.setValue(valueConverter.doBackward(value)); if (oldValue == null) { return null; } return valueConverter.doForward(oldValue); } @Override public boolean equals(Object o) { if (o == this) { return true; } if (!(o instanceof Map.Entry)) { return false; } @SuppressWarnings("unchecked") Map.Entry<?, ?> other = (Map.Entry<?, ?>) o; return getKey().equals(other.getKey()) && getValue().equals(getValue()); } @Override public int hashCode() { return realEntry.hashCode(); } } }
Extends List to add the capability to make the list immutable and inspect if it is modifiable.

All implementations must support efficient random access.

/** * Extends {@link List} to add the capability to make the list immutable and inspect if it is * modifiable. * * <p>All implementations must support efficient random access. */
public static interface ProtobufList<E> extends List<E>, RandomAccess {
Makes this list immutable. All subsequent modifications will throw an UnsupportedOperationException.
/** * Makes this list immutable. All subsequent modifications will throw an {@link * UnsupportedOperationException}. */
void makeImmutable();
Returns whether this list can be modified via the publicly accessible List methods.
/** * Returns whether this list can be modified via the publicly accessible {@link List} methods. */
boolean isModifiable();
Returns a mutable clone of this list with the specified capacity.
/** Returns a mutable clone of this list with the specified capacity. */
ProtobufList<E> mutableCopyWithCapacity(int capacity); }
A List implementation that avoids boxing the elements into Integers if possible. Does not support null elements.
/** * A {@link java.util.List} implementation that avoids boxing the elements into Integers if * possible. Does not support null elements. */
public static interface IntList extends ProtobufList<Integer> {
Like List<Integer>.get(int) but more efficient in that it doesn't box the returned value.
/** Like {@link #get(int)} but more efficient in that it doesn't box the returned value. */
int getInt(int index);
Like List<Integer>.add(Integer) but more efficient in that it doesn't box the element.
/** Like {@link #add(Object)} but more efficient in that it doesn't box the element. */
void addInt(int element);
Like List<Integer>.set(int, Integer) but more efficient in that it doesn't box the element.
/** Like {@link #set(int, Object)} but more efficient in that it doesn't box the element. */
int setInt(int index, int element);
Returns a mutable clone of this list with the specified capacity.
/** Returns a mutable clone of this list with the specified capacity. */
@Override IntList mutableCopyWithCapacity(int capacity); }
A List implementation that avoids boxing the elements into Booleans if possible. Does not support null elements.
/** * A {@link java.util.List} implementation that avoids boxing the elements into Booleans if * possible. Does not support null elements. */
public static interface BooleanList extends ProtobufList<Boolean> {
Like List<Boolean>.get(int) but more efficient in that it doesn't box the returned value.
/** Like {@link #get(int)} but more efficient in that it doesn't box the returned value. */
boolean getBoolean(int index);
Like List<Boolean>.add(Boolean) but more efficient in that it doesn't box the element.
/** Like {@link #add(Object)} but more efficient in that it doesn't box the element. */
void addBoolean(boolean element);
Like List<Boolean>.set(int, Boolean) but more efficient in that it doesn't box the element.
/** Like {@link #set(int, Object)} but more efficient in that it doesn't box the element. */
boolean setBoolean(int index, boolean element);
Returns a mutable clone of this list with the specified capacity.
/** Returns a mutable clone of this list with the specified capacity. */
@Override BooleanList mutableCopyWithCapacity(int capacity); }
A List implementation that avoids boxing the elements into Longs if possible. Does not support null elements.
/** * A {@link java.util.List} implementation that avoids boxing the elements into Longs if possible. * Does not support null elements. */
public static interface LongList extends ProtobufList<Long> {
Like List<Long>.get(int) but more efficient in that it doesn't box the returned value.
/** Like {@link #get(int)} but more efficient in that it doesn't box the returned value. */
long getLong(int index);
Like List<Long>.add(Long) but more efficient in that it doesn't box the element.
/** Like {@link #add(Object)} but more efficient in that it doesn't box the element. */
void addLong(long element);
Like List<Long>.set(int, Long) but more efficient in that it doesn't box the element.
/** Like {@link #set(int, Object)} but more efficient in that it doesn't box the element. */
long setLong(int index, long element);
Returns a mutable clone of this list with the specified capacity.
/** Returns a mutable clone of this list with the specified capacity. */
@Override LongList mutableCopyWithCapacity(int capacity); }
A List implementation that avoids boxing the elements into Doubles if possible. Does not support null elements.
/** * A {@link java.util.List} implementation that avoids boxing the elements into Doubles if * possible. Does not support null elements. */
public static interface DoubleList extends ProtobufList<Double> {
Like List<Double>.get(int) but more efficient in that it doesn't box the returned value.
/** Like {@link #get(int)} but more efficient in that it doesn't box the returned value. */
double getDouble(int index);
Like List<Double>.add(Double) but more efficient in that it doesn't box the element.
/** Like {@link #add(Object)} but more efficient in that it doesn't box the element. */
void addDouble(double element);
Like List<Double>.set(int, Double) but more efficient in that it doesn't box the element.
/** Like {@link #set(int, Object)} but more efficient in that it doesn't box the element. */
double setDouble(int index, double element);
Returns a mutable clone of this list with the specified capacity.
/** Returns a mutable clone of this list with the specified capacity. */
@Override DoubleList mutableCopyWithCapacity(int capacity); }
A List implementation that avoids boxing the elements into Floats if possible. Does not support null elements.
/** * A {@link java.util.List} implementation that avoids boxing the elements into Floats if * possible. Does not support null elements. */
public static interface FloatList extends ProtobufList<Float> {
Like List<Float>.get(int) but more efficient in that it doesn't box the returned value.
/** Like {@link #get(int)} but more efficient in that it doesn't box the returned value. */
float getFloat(int index);
Like List<Float>.add(Float) but more efficient in that it doesn't box the element.
/** Like {@link #add(Object)} but more efficient in that it doesn't box the element. */
void addFloat(float element);
Like List<Float>.set(int, Float) but more efficient in that it doesn't box the element.
/** Like {@link #set(int, Object)} but more efficient in that it doesn't box the element. */
float setFloat(int index, float element);
Returns a mutable clone of this list with the specified capacity.
/** Returns a mutable clone of this list with the specified capacity. */
@Override FloatList mutableCopyWithCapacity(int capacity); } }