// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////

package com.google.crypto.tink.subtle;

import java.util.Arrays;

A collection of byte-manipulation functions, and some more specific functions for AES-CMAC / AES-SIV.

Beware: some of the functions here are specific to the representation used for AES-CMAC and SIV, as described in their RFCs. These might not work if used in other contexts.

/** * A collection of byte-manipulation functions, and some more specific functions for AES-CMAC / * AES-SIV. * * <p>Beware: some of the functions here are specific to the representation used for AES-CMAC and * SIV, as described in their RFCs. These might not work if used in other contexts. */
class AesUtil { public static final int BLOCK_SIZE = 16;
Multiplies value by x in the finite field GF(2^128) represented using the primitive polynomial x^128 + x^7 + x^2 + x + 1.
Params:
  • value – an arrays of 16 bytes representing an element of GF(2^128) using bigendian byte order.
/** * Multiplies value by x in the finite field GF(2^128) represented using the primitive polynomial * x^128 + x^7 + x^2 + x + 1. * * @param value an arrays of 16 bytes representing an element of GF(2^128) using bigendian byte * order. */
static byte[] dbl(final byte[] value) { if (value.length != BLOCK_SIZE) { throw new IllegalArgumentException("value must be a block."); } // Note that >> is an arithmetical shift, which copies the leftmost bit to fill the // blanks created by shifting. For instance, x >> 7 will equal 0xFF if (x & 1), and 0x00 // otherwise. This is a bit hard to read, but the operation is branchless, which is valuable // in this context. // Shift left by one. byte[] res = new byte[BLOCK_SIZE]; for (int i = 0; i < BLOCK_SIZE; i++) { res[i] = (byte) (0xFE & (value[i] << 1)); if (i < BLOCK_SIZE - 1) { res[i] |= (byte) (0x01 & (value[i + 1] >> 7)); } } // And handle the modulus if needed (0x87 is the binary representation of the polynomial, // minus the x^128 part). res[BLOCK_SIZE - 1] ^= (byte) (0x87 & (value[0] >> 7)); return res; }
Pad by adding a 1 bit, then pad with 0 bits to the next block limit. This is the standard for both CMAC and AES-SIV. - https://tools.ietf.org/html/rfc4493#section-2.4 - https://tools.ietf.org/html/rfc5297#section-2.1
Params:
  • x – The array to pad (will be copied)
Returns:The padded array.
/** * Pad by adding a 1 bit, then pad with 0 bits to the next block limit. This is the standard for * both CMAC and AES-SIV. - https://tools.ietf.org/html/rfc4493#section-2.4 - * https://tools.ietf.org/html/rfc5297#section-2.1 * * @param x The array to pad (will be copied) * @return The padded array. */
static byte[] cmacPad(final byte[] x) { if (x.length >= BLOCK_SIZE) { throw new IllegalArgumentException("x must be smaller than a block."); } byte[] result = Arrays.copyOf(x, 16); result[x.length] = (byte) 0x80; return result; } }