/*
 * Copyright (C) 2010 The Android Open Source Project
 * Copyright (C) 2012 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.gson.internal;

import java.io.ObjectStreamException;
import java.io.Serializable;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.Comparator;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.NoSuchElementException;
import java.util.Set;

A map of comparable keys to values. Unlike TreeMap, this class uses insertion order for iteration order. Comparison order is only used as an optimization for efficient insertion and removal.

This implementation was derived from Android 4.1's TreeMap class.

/** * A map of comparable keys to values. Unlike {@code TreeMap}, this class uses * insertion order for iteration order. Comparison order is only used as an * optimization for efficient insertion and removal. * * <p>This implementation was derived from Android 4.1's TreeMap class. */
public final class LinkedTreeMap<K, V> extends AbstractMap<K, V> implements Serializable { @SuppressWarnings({ "unchecked", "rawtypes" }) // to avoid Comparable<Comparable<Comparable<...>>> private static final Comparator<Comparable> NATURAL_ORDER = new Comparator<Comparable>() { public int compare(Comparable a, Comparable b) { return a.compareTo(b); } }; Comparator<? super K> comparator; Node<K, V> root; int size = 0; int modCount = 0; // Used to preserve iteration order final Node<K, V> header = new Node<K, V>();
Create a natural order, empty tree map whose keys must be mutually comparable and non-null.
/** * Create a natural order, empty tree map whose keys must be mutually * comparable and non-null. */
@SuppressWarnings("unchecked") // unsafe! this assumes K is comparable public LinkedTreeMap() { this((Comparator<? super K>) NATURAL_ORDER); }
Create a tree map ordered by comparator. This map's keys may only be null if comparator permits.
Params:
  • comparator – the comparator to order elements with, or null to use the natural ordering.
/** * Create a tree map ordered by {@code comparator}. This map's keys may only * be null if {@code comparator} permits. * * @param comparator the comparator to order elements with, or {@code null} to * use the natural ordering. */
@SuppressWarnings({ "unchecked", "rawtypes" }) // unsafe! if comparator is null, this assumes K is comparable public LinkedTreeMap(Comparator<? super K> comparator) { this.comparator = comparator != null ? comparator : (Comparator) NATURAL_ORDER; } @Override public int size() { return size; } @Override public V get(Object key) { Node<K, V> node = findByObject(key); return node != null ? node.value : null; } @Override public boolean containsKey(Object key) { return findByObject(key) != null; } @Override public V put(K key, V value) { if (key == null) { throw new NullPointerException("key == null"); } Node<K, V> created = find(key, true); V result = created.value; created.value = value; return result; } @Override public void clear() { root = null; size = 0; modCount++; // Clear iteration order Node<K, V> header = this.header; header.next = header.prev = header; } @Override public V remove(Object key) { Node<K, V> node = removeInternalByKey(key); return node != null ? node.value : null; }
Returns the node at or adjacent to the given key, creating it if requested.
Throws:
  • ClassCastException – if key and the tree's keys aren't mutually comparable.
/** * Returns the node at or adjacent to the given key, creating it if requested. * * @throws ClassCastException if {@code key} and the tree's keys aren't * mutually comparable. */
Node<K, V> find(K key, boolean create) { Comparator<? super K> comparator = this.comparator; Node<K, V> nearest = root; int comparison = 0; if (nearest != null) { // Micro-optimization: avoid polymorphic calls to Comparator.compare(). @SuppressWarnings("unchecked") // Throws a ClassCastException below if there's trouble. Comparable<Object> comparableKey = (comparator == NATURAL_ORDER) ? (Comparable<Object>) key : null; while (true) { comparison = (comparableKey != null) ? comparableKey.compareTo(nearest.key) : comparator.compare(key, nearest.key); // We found the requested key. if (comparison == 0) { return nearest; } // If it exists, the key is in a subtree. Go deeper. Node<K, V> child = (comparison < 0) ? nearest.left : nearest.right; if (child == null) { break; } nearest = child; } } // The key doesn't exist in this tree. if (!create) { return null; } // Create the node and add it to the tree or the table. Node<K, V> header = this.header; Node<K, V> created; if (nearest == null) { // Check that the value is comparable if we didn't do any comparisons. if (comparator == NATURAL_ORDER && !(key instanceof Comparable)) { throw new ClassCastException(key.getClass().getName() + " is not Comparable"); } created = new Node<K, V>(nearest, key, header, header.prev); root = created; } else { created = new Node<K, V>(nearest, key, header, header.prev); if (comparison < 0) { // nearest.key is higher nearest.left = created; } else { // comparison > 0, nearest.key is lower nearest.right = created; } rebalance(nearest, true); } size++; modCount++; return created; } @SuppressWarnings("unchecked") Node<K, V> findByObject(Object key) { try { return key != null ? find((K) key, false) : null; } catch (ClassCastException e) { return null; } }
Returns this map's entry that has the same key and value as entry, or null if this map has no such entry.

This method uses the comparator for key equality rather than equals. If this map's comparator isn't consistent with equals (such as String.CASE_INSENSITIVE_ORDER), then remove() and contains() will violate the collections API.

/** * Returns this map's entry that has the same key and value as {@code * entry}, or null if this map has no such entry. * * <p>This method uses the comparator for key equality rather than {@code * equals}. If this map's comparator isn't consistent with equals (such as * {@code String.CASE_INSENSITIVE_ORDER}), then {@code remove()} and {@code * contains()} will violate the collections API. */
Node<K, V> findByEntry(Entry<?, ?> entry) { Node<K, V> mine = findByObject(entry.getKey()); boolean valuesEqual = mine != null && equal(mine.value, entry.getValue()); return valuesEqual ? mine : null; } private boolean equal(Object a, Object b) { return a == b || (a != null && a.equals(b)); }
Removes node from this tree, rearranging the tree's structure as necessary.
Params:
  • unlink – true to also unlink this node from the iteration linked list.
/** * Removes {@code node} from this tree, rearranging the tree's structure as * necessary. * * @param unlink true to also unlink this node from the iteration linked list. */
void removeInternal(Node<K, V> node, boolean unlink) { if (unlink) { node.prev.next = node.next; node.next.prev = node.prev; } Node<K, V> left = node.left; Node<K, V> right = node.right; Node<K, V> originalParent = node.parent; if (left != null && right != null) { /* * To remove a node with both left and right subtrees, move an * adjacent node from one of those subtrees into this node's place. * * Removing the adjacent node may change this node's subtrees. This * node may no longer have two subtrees once the adjacent node is * gone! */ Node<K, V> adjacent = (left.height > right.height) ? left.last() : right.first(); removeInternal(adjacent, false); // takes care of rebalance and size-- int leftHeight = 0; left = node.left; if (left != null) { leftHeight = left.height; adjacent.left = left; left.parent = adjacent; node.left = null; } int rightHeight = 0; right = node.right; if (right != null) { rightHeight = right.height; adjacent.right = right; right.parent = adjacent; node.right = null; } adjacent.height = Math.max(leftHeight, rightHeight) + 1; replaceInParent(node, adjacent); return; } else if (left != null) { replaceInParent(node, left); node.left = null; } else if (right != null) { replaceInParent(node, right); node.right = null; } else { replaceInParent(node, null); } rebalance(originalParent, false); size--; modCount++; } Node<K, V> removeInternalByKey(Object key) { Node<K, V> node = findByObject(key); if (node != null) { removeInternal(node, true); } return node; } private void replaceInParent(Node<K, V> node, Node<K, V> replacement) { Node<K, V> parent = node.parent; node.parent = null; if (replacement != null) { replacement.parent = parent; } if (parent != null) { if (parent.left == node) { parent.left = replacement; } else { assert (parent.right == node); parent.right = replacement; } } else { root = replacement; } }
Rebalances the tree by making any AVL rotations necessary between the newly-unbalanced node and the tree's root.
Params:
  • insert – true if the node was unbalanced by an insert; false if it was by a removal.
/** * Rebalances the tree by making any AVL rotations necessary between the * newly-unbalanced node and the tree's root. * * @param insert true if the node was unbalanced by an insert; false if it * was by a removal. */
private void rebalance(Node<K, V> unbalanced, boolean insert) { for (Node<K, V> node = unbalanced; node != null; node = node.parent) { Node<K, V> left = node.left; Node<K, V> right = node.right; int leftHeight = left != null ? left.height : 0; int rightHeight = right != null ? right.height : 0; int delta = leftHeight - rightHeight; if (delta == -2) { Node<K, V> rightLeft = right.left; Node<K, V> rightRight = right.right; int rightRightHeight = rightRight != null ? rightRight.height : 0; int rightLeftHeight = rightLeft != null ? rightLeft.height : 0; int rightDelta = rightLeftHeight - rightRightHeight; if (rightDelta == -1 || (rightDelta == 0 && !insert)) { rotateLeft(node); // AVL right right } else { assert (rightDelta == 1); rotateRight(right); // AVL right left rotateLeft(node); } if (insert) { break; // no further rotations will be necessary } } else if (delta == 2) { Node<K, V> leftLeft = left.left; Node<K, V> leftRight = left.right; int leftRightHeight = leftRight != null ? leftRight.height : 0; int leftLeftHeight = leftLeft != null ? leftLeft.height : 0; int leftDelta = leftLeftHeight - leftRightHeight; if (leftDelta == 1 || (leftDelta == 0 && !insert)) { rotateRight(node); // AVL left left } else { assert (leftDelta == -1); rotateLeft(left); // AVL left right rotateRight(node); } if (insert) { break; // no further rotations will be necessary } } else if (delta == 0) { node.height = leftHeight + 1; // leftHeight == rightHeight if (insert) { break; // the insert caused balance, so rebalancing is done! } } else { assert (delta == -1 || delta == 1); node.height = Math.max(leftHeight, rightHeight) + 1; if (!insert) { break; // the height hasn't changed, so rebalancing is done! } } } }
Rotates the subtree so that its root's right child is the new root.
/** * Rotates the subtree so that its root's right child is the new root. */
private void rotateLeft(Node<K, V> root) { Node<K, V> left = root.left; Node<K, V> pivot = root.right; Node<K, V> pivotLeft = pivot.left; Node<K, V> pivotRight = pivot.right; // move the pivot's left child to the root's right root.right = pivotLeft; if (pivotLeft != null) { pivotLeft.parent = root; } replaceInParent(root, pivot); // move the root to the pivot's left pivot.left = root; root.parent = pivot; // fix heights root.height = Math.max(left != null ? left.height : 0, pivotLeft != null ? pivotLeft.height : 0) + 1; pivot.height = Math.max(root.height, pivotRight != null ? pivotRight.height : 0) + 1; }
Rotates the subtree so that its root's left child is the new root.
/** * Rotates the subtree so that its root's left child is the new root. */
private void rotateRight(Node<K, V> root) { Node<K, V> pivot = root.left; Node<K, V> right = root.right; Node<K, V> pivotLeft = pivot.left; Node<K, V> pivotRight = pivot.right; // move the pivot's right child to the root's left root.left = pivotRight; if (pivotRight != null) { pivotRight.parent = root; } replaceInParent(root, pivot); // move the root to the pivot's right pivot.right = root; root.parent = pivot; // fixup heights root.height = Math.max(right != null ? right.height : 0, pivotRight != null ? pivotRight.height : 0) + 1; pivot.height = Math.max(root.height, pivotLeft != null ? pivotLeft.height : 0) + 1; } private EntrySet entrySet; private KeySet keySet; @Override public Set<Entry<K, V>> entrySet() { EntrySet result = entrySet; return result != null ? result : (entrySet = new EntrySet()); } @Override public Set<K> keySet() { KeySet result = keySet; return result != null ? result : (keySet = new KeySet()); } static final class Node<K, V> implements Entry<K, V> { Node<K, V> parent; Node<K, V> left; Node<K, V> right; Node<K, V> next; Node<K, V> prev; final K key; V value; int height;
Create the header entry
/** Create the header entry */
Node() { key = null; next = prev = this; }
Create a regular entry
/** Create a regular entry */
Node(Node<K, V> parent, K key, Node<K, V> next, Node<K, V> prev) { this.parent = parent; this.key = key; this.height = 1; this.next = next; this.prev = prev; prev.next = this; next.prev = this; } public K getKey() { return key; } public V getValue() { return value; } public V setValue(V value) { V oldValue = this.value; this.value = value; return oldValue; } @SuppressWarnings("rawtypes") @Override public boolean equals(Object o) { if (o instanceof Entry) { Entry other = (Entry) o; return (key == null ? other.getKey() == null : key.equals(other.getKey())) && (value == null ? other.getValue() == null : value.equals(other.getValue())); } return false; } @Override public int hashCode() { return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode()); } @Override public String toString() { return key + "=" + value; }
Returns the first node in this subtree.
/** * Returns the first node in this subtree. */
public Node<K, V> first() { Node<K, V> node = this; Node<K, V> child = node.left; while (child != null) { node = child; child = node.left; } return node; }
Returns the last node in this subtree.
/** * Returns the last node in this subtree. */
public Node<K, V> last() { Node<K, V> node = this; Node<K, V> child = node.right; while (child != null) { node = child; child = node.right; } return node; } } private abstract class LinkedTreeMapIterator<T> implements Iterator<T> { Node<K, V> next = header.next; Node<K, V> lastReturned = null; int expectedModCount = modCount; LinkedTreeMapIterator() { } public final boolean hasNext() { return next != header; } final Node<K, V> nextNode() { Node<K, V> e = next; if (e == header) { throw new NoSuchElementException(); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } next = e.next; return lastReturned = e; } public final void remove() { if (lastReturned == null) { throw new IllegalStateException(); } removeInternal(lastReturned, true); lastReturned = null; expectedModCount = modCount; } } class EntrySet extends AbstractSet<Entry<K, V>> { @Override public int size() { return size; } @Override public Iterator<Entry<K, V>> iterator() { return new LinkedTreeMapIterator<Entry<K, V>>() { public Entry<K, V> next() { return nextNode(); } }; } @Override public boolean contains(Object o) { return o instanceof Entry && findByEntry((Entry<?, ?>) o) != null; } @Override public boolean remove(Object o) { if (!(o instanceof Entry)) { return false; } Node<K, V> node = findByEntry((Entry<?, ?>) o); if (node == null) { return false; } removeInternal(node, true); return true; } @Override public void clear() { LinkedTreeMap.this.clear(); } } final class KeySet extends AbstractSet<K> { @Override public int size() { return size; } @Override public Iterator<K> iterator() { return new LinkedTreeMapIterator<K>() { public K next() { return nextNode().key; } }; } @Override public boolean contains(Object o) { return containsKey(o); } @Override public boolean remove(Object key) { return removeInternalByKey(key) != null; } @Override public void clear() { LinkedTreeMap.this.clear(); } }
If somebody is unlucky enough to have to serialize one of these, serialize it as a LinkedHashMap so that they won't need Gson on the other side to deserialize it. Using serialization defeats our DoS defence, so most apps shouldn't use it.
/** * If somebody is unlucky enough to have to serialize one of these, serialize * it as a LinkedHashMap so that they won't need Gson on the other side to * deserialize it. Using serialization defeats our DoS defence, so most apps * shouldn't use it. */
private Object writeReplace() throws ObjectStreamException { return new LinkedHashMap<K, V>(this); } }