/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.util.proto;

import android.annotation.TestApi;
import android.util.Log;

import java.util.ArrayList;

A stream of bytes containing a read pointer and a write pointer, backed by a set of fixed-size buffers. There are write functions for the primitive types stored by protocol buffers, but none of the logic for tags, inner objects, or any of that. Terminology: *Pos: Position in the whole data set (as if it were a single buffer). *Index: Position within a buffer. *BufIndex: Index of a buffer within the mBuffers list
@hide
/** * A stream of bytes containing a read pointer and a write pointer, * backed by a set of fixed-size buffers. There are write functions for the * primitive types stored by protocol buffers, but none of the logic * for tags, inner objects, or any of that. * * Terminology: * *Pos: Position in the whole data set (as if it were a single buffer). * *Index: Position within a buffer. * *BufIndex: Index of a buffer within the mBuffers list * @hide */
@TestApi public final class EncodedBuffer { private static final String TAG = "EncodedBuffer"; private final ArrayList<byte[]> mBuffers = new ArrayList<byte[]>(); private final int mChunkSize;
The number of buffers in mBuffers. Stored separately to avoid the extra function call to size() everywhere for bounds checking.
/** * The number of buffers in mBuffers. Stored separately to avoid the extra * function call to size() everywhere for bounds checking. */
private int mBufferCount;
The buffer we are currently writing to.
/** * The buffer we are currently writing to. */
private byte[] mWriteBuffer;
The index into mWriteBuffer that we will write to next. It may point to the end of the buffer, in which case, the NEXT write will allocate a new buffer.
/** * The index into mWriteBuffer that we will write to next. * It may point to the end of the buffer, in which case, * the NEXT write will allocate a new buffer. */
private int mWriteIndex;
The index of mWriteBuffer in mBuffers.
/** * The index of mWriteBuffer in mBuffers. */
private int mWriteBufIndex;
The buffer we are currently reading from.
/** * The buffer we are currently reading from. */
private byte[] mReadBuffer;
The index of mReadBuffer in mBuffers.
/** * The index of mReadBuffer in mBuffers. */
private int mReadBufIndex;
The index into mReadBuffer that we will read from next. It may point to the end of the buffer, in which case, the NEXT read will advance to the next buffer.
/** * The index into mReadBuffer that we will read from next. * It may point to the end of the buffer, in which case, * the NEXT read will advance to the next buffer. */
private int mReadIndex;
The amount of data in the last buffer.
/** * The amount of data in the last buffer. */
private int mReadLimit = -1;
How much data there is total.
/** * How much data there is total. */
private int mReadableSize = -1; public EncodedBuffer() { this(0); }
Construct an EncodedBuffer object.
Params:
  • chunkSize – The size of the buffers to use. If chunkSize <= 0, a default size will be used instead.
/** * Construct an EncodedBuffer object. * * @param chunkSize The size of the buffers to use. If chunkSize &lt;= 0, a default * size will be used instead. */
public EncodedBuffer(int chunkSize) { if (chunkSize <= 0) { chunkSize = 8 * 1024; } mChunkSize = chunkSize; mWriteBuffer = new byte[mChunkSize]; mBuffers.add(mWriteBuffer); mBufferCount = 1; } // // Buffer management. //
Rewind the read and write pointers, and record how much data was last written.
/** * Rewind the read and write pointers, and record how much data was last written. */
public void startEditing() { mReadableSize = ((mWriteBufIndex) * mChunkSize) + mWriteIndex; mReadLimit = mWriteIndex; mWriteBuffer = mBuffers.get(0); mWriteIndex = 0; mWriteBufIndex = 0; mReadBuffer = mWriteBuffer; mReadBufIndex = 0; mReadIndex = 0; }
Rewind the read pointer. Don't touch the write pointer.
/** * Rewind the read pointer. Don't touch the write pointer. */
public void rewindRead() { mReadBuffer = mBuffers.get(0); mReadBufIndex = 0; mReadIndex = 0; }
Only valid after startEditing. Returns -1 before that.
/** * Only valid after startEditing. Returns -1 before that. */
public int getReadableSize() { return mReadableSize; } // // Reading from the read position. //
Only valid after startEditing.
/** * Only valid after startEditing. */
public int getReadPos() { return ((mReadBufIndex) * mChunkSize) + mReadIndex; }
Skip over _amount_ bytes.
/** * Skip over _amount_ bytes. */
public void skipRead(int amount) { if (amount < 0) { throw new RuntimeException("skipRead with negative amount=" + amount); } if (amount == 0) { return; } if (amount <= mChunkSize - mReadIndex) { mReadIndex += amount; } else { amount -= mChunkSize - mReadIndex; mReadIndex = amount % mChunkSize; if (mReadIndex == 0) { mReadIndex = mChunkSize; mReadBufIndex += (amount / mChunkSize); } else { mReadBufIndex += 1 + (amount / mChunkSize); } mReadBuffer = mBuffers.get(mReadBufIndex); } }
Read one byte from the stream and advance the read pointer.
Throws:
  • IndexOutOfBoundsException – if the read point is past the end of the buffer or past the read limit previously set by startEditing().
/** * Read one byte from the stream and advance the read pointer. * * @throws IndexOutOfBoundsException if the read point is past the end of * the buffer or past the read limit previously set by startEditing(). */
public byte readRawByte() { if (mReadBufIndex > mBufferCount || (mReadBufIndex == mBufferCount - 1 && mReadIndex >= mReadLimit)) { throw new IndexOutOfBoundsException("Trying to read too much data" + " mReadBufIndex=" + mReadBufIndex + " mBufferCount=" + mBufferCount + " mReadIndex=" + mReadIndex + " mReadLimit=" + mReadLimit); } if (mReadIndex >= mChunkSize) { mReadBufIndex++; mReadBuffer = mBuffers.get(mReadBufIndex); mReadIndex = 0; } return mReadBuffer[mReadIndex++]; }
Read an unsigned varint. The value will be returend in a java signed long.
/** * Read an unsigned varint. The value will be returend in a java signed long. */
public long readRawUnsigned() { int bits = 0; long result = 0; while (true) { final byte b = readRawByte(); result |= ((long)(b & 0x7F)) << bits; if ((b & 0x80) == 0) { return result; } bits += 7; if (bits > 64) { throw new ProtoParseException("Varint too long -- " + getDebugString()); } } }
Read 32 little endian bits from the stream.
/** * Read 32 little endian bits from the stream. */
public int readRawFixed32() { return (readRawByte() & 0x0ff) | ((readRawByte() & 0x0ff) << 8) | ((readRawByte() & 0x0ff) << 16) | ((readRawByte() & 0x0ff) << 24); } // // Writing at a the end of the stream. //
Advance to the next write buffer, allocating it if necessary. Must be called immediately before the next write, not after a write, so that a dangling empty buffer is not created. Doing so will interfere with the expectation that mWriteIndex will point past the end of the buffer until the next read happens.
/** * Advance to the next write buffer, allocating it if necessary. * * Must be called immediately <b>before</b> the next write, not after a write, * so that a dangling empty buffer is not created. Doing so will interfere * with the expectation that mWriteIndex will point past the end of the buffer * until the next read happens. */
private void nextWriteBuffer() { mWriteBufIndex++; if (mWriteBufIndex >= mBufferCount) { mWriteBuffer = new byte[mChunkSize]; mBuffers.add(mWriteBuffer); mBufferCount++; } else { mWriteBuffer = mBuffers.get(mWriteBufIndex); } mWriteIndex = 0; }
Write a single byte to the stream.
/** * Write a single byte to the stream. */
public void writeRawByte(byte val) { if (mWriteIndex >= mChunkSize) { nextWriteBuffer(); } mWriteBuffer[mWriteIndex++] = val; }
Return how many bytes a 32 bit unsigned varint will take when written to the stream.
/** * Return how many bytes a 32 bit unsigned varint will take when written to the stream. */
public static int getRawVarint32Size(int val) { if ((val & (0xffffffff << 7)) == 0) return 1; if ((val & (0xffffffff << 14)) == 0) return 2; if ((val & (0xffffffff << 21)) == 0) return 3; if ((val & (0xffffffff << 28)) == 0) return 4; return 5; }
Write an unsigned varint to the stream. A signed value would need to take 10 bytes.
Params:
  • val – treated as unsigned.
/** * Write an unsigned varint to the stream. A signed value would need to take 10 bytes. * * @param val treated as unsigned. */
public void writeRawVarint32(int val) { while (true) { if ((val & ~0x7F) == 0) { writeRawByte((byte)val); return; } else { writeRawByte((byte)((val & 0x7F) | 0x80)); val >>>= 7; } } }
Return how many bytes a 32 bit signed zig zag value will take when written to the stream.
/** * Return how many bytes a 32 bit signed zig zag value will take when written to the stream. */
public static int getRawZigZag32Size(int val) { return getRawVarint32Size(zigZag32(val)); }
Write a zig-zag encoded value. @param val treated as signed
/** * Write a zig-zag encoded value. * * @param val treated as signed */
public void writeRawZigZag32(int val) { writeRawVarint32(zigZag32(val)); }
Return how many bytes a 64 bit varint will take when written to the stream.
/** * Return how many bytes a 64 bit varint will take when written to the stream. */
public static int getRawVarint64Size(long val) { if ((val & (0xffffffffffffffffL << 7)) == 0) return 1; if ((val & (0xffffffffffffffffL << 14)) == 0) return 2; if ((val & (0xffffffffffffffffL << 21)) == 0) return 3; if ((val & (0xffffffffffffffffL << 28)) == 0) return 4; if ((val & (0xffffffffffffffffL << 35)) == 0) return 5; if ((val & (0xffffffffffffffffL << 42)) == 0) return 6; if ((val & (0xffffffffffffffffL << 49)) == 0) return 7; if ((val & (0xffffffffffffffffL << 56)) == 0) return 8; if ((val & (0xffffffffffffffffL << 63)) == 0) return 9; return 10; }
Write a 64 bit varint to the stream.
/** * Write a 64 bit varint to the stream. */
public void writeRawVarint64(long val) { while (true) { if ((val & ~0x7FL) == 0) { writeRawByte((byte)val); return; } else { writeRawByte((byte)((val & 0x7F) | 0x80)); val >>>= 7; } } }
Return how many bytes a signed 64 bit zig zag value will take when written to the stream.
/** * Return how many bytes a signed 64 bit zig zag value will take when written to the stream. */
public static int getRawZigZag64Size(long val) { return getRawVarint64Size(zigZag64(val)); }
Write a 64 bit signed zig zag value to the stream.
/** * Write a 64 bit signed zig zag value to the stream. */
public void writeRawZigZag64(long val) { writeRawVarint64(zigZag64(val)); }
Write 4 little endian bytes to the stream.
/** * Write 4 little endian bytes to the stream. */
public void writeRawFixed32(int val) { writeRawByte((byte)(val)); writeRawByte((byte)(val >> 8)); writeRawByte((byte)(val >> 16)); writeRawByte((byte)(val >> 24)); }
Write 8 little endian bytes to the stream.
/** * Write 8 little endian bytes to the stream. */
public void writeRawFixed64(long val) { writeRawByte((byte)(val)); writeRawByte((byte)(val >> 8)); writeRawByte((byte)(val >> 16)); writeRawByte((byte)(val >> 24)); writeRawByte((byte)(val >> 32)); writeRawByte((byte)(val >> 40)); writeRawByte((byte)(val >> 48)); writeRawByte((byte)(val >> 56)); }
Write a buffer to the stream. Writes nothing if val is null or zero-length.
/** * Write a buffer to the stream. Writes nothing if val is null or zero-length. */
public void writeRawBuffer(byte[] val) { if (val != null && val.length > 0) { writeRawBuffer(val, 0, val.length); } }
Write part of an array of bytes.
/** * Write part of an array of bytes. */
public void writeRawBuffer(byte[] val, int offset, int length) { if (val == null) { return; } // Write up to the amount left in the first chunk to write. int amt = length < (mChunkSize - mWriteIndex) ? length : (mChunkSize - mWriteIndex); if (amt > 0) { System.arraycopy(val, offset, mWriteBuffer, mWriteIndex, amt); mWriteIndex += amt; length -= amt; offset += amt; } while (length > 0) { // We know we're now at the beginning of a chunk nextWriteBuffer(); amt = length < mChunkSize ? length : mChunkSize; System.arraycopy(val, offset, mWriteBuffer, mWriteIndex, amt); mWriteIndex += amt; length -= amt; offset += amt; } }
Copies data _size_ bytes of data within this buffer from _srcOffset_ to the current write position. Like memmov but handles the chunked buffer.
/** * Copies data _size_ bytes of data within this buffer from _srcOffset_ * to the current write position. Like memmov but handles the chunked buffer. */
public void writeFromThisBuffer(int srcOffset, int size) { if (mReadLimit < 0) { throw new IllegalStateException("writeFromThisBuffer before startEditing"); } if (srcOffset < getWritePos()) { throw new IllegalArgumentException("Can only move forward in the buffer --" + " srcOffset=" + srcOffset + " size=" + size + " " + getDebugString()); } if (srcOffset + size > mReadableSize) { throw new IllegalArgumentException("Trying to move more data than there is --" + " srcOffset=" + srcOffset + " size=" + size + " " + getDebugString()); } if (size == 0) { return; } if (srcOffset == ((mWriteBufIndex) * mChunkSize) + mWriteIndex /* write pos */) { // Writing to the same location. Just advance the write pointer. We already // checked that size is in bounds, so we don't need to do any more range // checking. if (size <= mChunkSize - mWriteIndex) { mWriteIndex += size; } else { size -= mChunkSize - mWriteIndex; mWriteIndex = size % mChunkSize; if (mWriteIndex == 0) { // Roll it back so nextWriteBuffer can do its job // on the next call (also makes mBuffers.get() not // fail if we're at the end). mWriteIndex = mChunkSize; mWriteBufIndex += (size / mChunkSize); } else { mWriteBufIndex += 1 + (size / mChunkSize); } mWriteBuffer = mBuffers.get(mWriteBufIndex); } } else { // Loop through the buffer, copying as much as we can each time. // We already bounds checked so we don't need to do it again here, // and nextWriteBuffer will never allocate. int readBufIndex = srcOffset / mChunkSize; byte[] readBuffer = mBuffers.get(readBufIndex); int readIndex = srcOffset % mChunkSize; while (size > 0) { if (mWriteIndex >= mChunkSize) { nextWriteBuffer(); } if (readIndex >= mChunkSize) { readBufIndex++; readBuffer = mBuffers.get(readBufIndex); readIndex = 0; } final int spaceInWriteBuffer = mChunkSize - mWriteIndex; final int availableInReadBuffer = mChunkSize - readIndex; final int amt = Math.min(size, Math.min(spaceInWriteBuffer, availableInReadBuffer)); System.arraycopy(readBuffer, readIndex, mWriteBuffer, mWriteIndex, amt); mWriteIndex += amt; readIndex += amt; size -= amt; } } } // // Writing at a particular location. //
Returns the index into the virtual array of the write pointer.
/** * Returns the index into the virtual array of the write pointer. */
public int getWritePos() { return ((mWriteBufIndex) * mChunkSize) + mWriteIndex; }
Resets the write pointer to a virtual location as returned by getWritePos.
/** * Resets the write pointer to a virtual location as returned by getWritePos. */
public void rewindWriteTo(int writePos) { if (writePos > getWritePos()) { throw new RuntimeException("rewindWriteTo only can go backwards" + writePos); } mWriteBufIndex = writePos / mChunkSize; mWriteIndex = writePos % mChunkSize; if (mWriteIndex == 0 && mWriteBufIndex != 0) { // Roll back so nextWriteBuffer can do its job on the next call // but at the first write we're at 0. mWriteIndex = mChunkSize; mWriteBufIndex--; } mWriteBuffer = mBuffers.get(mWriteBufIndex); }
Read a 32 bit value from the stream. Doesn't touch or affect mWritePos.
/** * Read a 32 bit value from the stream. * * Doesn't touch or affect mWritePos. */
public int getRawFixed32At(int pos) { return (0x00ff & (int)mBuffers.get(pos / mChunkSize)[pos % mChunkSize]) | ((0x0ff & (int)mBuffers.get((pos+1) / mChunkSize)[(pos+1) % mChunkSize]) << 8) | ((0x0ff & (int)mBuffers.get((pos+2) / mChunkSize)[(pos+2) % mChunkSize]) << 16) | ((0x0ff & (int)mBuffers.get((pos+3) / mChunkSize)[(pos+3) % mChunkSize]) << 24); }
Overwrite a 32 bit value in the stream. Doesn't touch or affect mWritePos.
/** * Overwrite a 32 bit value in the stream. * * Doesn't touch or affect mWritePos. */
public void editRawFixed32(int pos, int val) { mBuffers.get(pos / mChunkSize)[pos % mChunkSize] = (byte)(val); mBuffers.get((pos+1) / mChunkSize)[(pos+1) % mChunkSize] = (byte)(val >> 8); mBuffers.get((pos+2) / mChunkSize)[(pos+2) % mChunkSize] = (byte)(val >> 16); mBuffers.get((pos+3) / mChunkSize)[(pos+3) % mChunkSize] = (byte)(val >> 24); } // // Zigging and zagging //
Zig-zag encode a 32 bit value.
/** * Zig-zag encode a 32 bit value. */
private static int zigZag32(int val) { return (val << 1) ^ (val >> 31); }
Zig-zag encode a 64 bit value.
/** * Zig-zag encode a 64 bit value. */
private static long zigZag64(long val) { return (val << 1) ^ (val >> 63); } // // Debugging / testing // // VisibleForTesting
Get a copy of the first _size_ bytes of data. This is not range checked, and if the bounds are outside what has been written you will get garbage and if it is outside the buffers that have been allocated, you will get an exception.
/** * Get a copy of the first _size_ bytes of data. This is not range * checked, and if the bounds are outside what has been written you will * get garbage and if it is outside the buffers that have been allocated, * you will get an exception. */
public byte[] getBytes(int size) { final byte[] result = new byte[size]; final int bufCount = size / mChunkSize; int bufIndex; int writeIndex = 0; for (bufIndex=0; bufIndex<bufCount; bufIndex++) { System.arraycopy(mBuffers.get(bufIndex), 0, result, writeIndex, mChunkSize); writeIndex += mChunkSize; } final int lastSize = size - (bufCount * mChunkSize); if (lastSize > 0) { System.arraycopy(mBuffers.get(bufIndex), 0, result, writeIndex, lastSize); } return result; }
Get the number of chunks allocated.
/** * Get the number of chunks allocated. */
// VisibleForTesting public int getChunkCount() { return mBuffers.size(); }
Get the write position inside the current write chunk.
/** * Get the write position inside the current write chunk. */
// VisibleForTesting public int getWriteIndex() { return mWriteIndex; }
Get the index of the current write chunk in the list of chunks.
/** * Get the index of the current write chunk in the list of chunks. */
// VisibleForTesting public int getWriteBufIndex() { return mWriteBufIndex; }
Return debugging information about this EncodedBuffer object.
/** * Return debugging information about this EncodedBuffer object. */
public String getDebugString() { return "EncodedBuffer( mChunkSize=" + mChunkSize + " mBuffers.size=" + mBuffers.size() + " mBufferCount=" + mBufferCount + " mWriteIndex=" + mWriteIndex + " mWriteBufIndex=" + mWriteBufIndex + " mReadBufIndex=" + mReadBufIndex + " mReadIndex=" + mReadIndex + " mReadableSize=" + mReadableSize + " mReadLimit=" + mReadLimit + " )"; }
Print the internal buffer chunks.
/** * Print the internal buffer chunks. */
public void dumpBuffers(String tag) { final int N = mBuffers.size(); int start = 0; for (int i=0; i<N; i++) { start += dumpByteString(tag, "{" + i + "} ", start, mBuffers.get(i)); } }
Print the internal buffer chunks.
/** * Print the internal buffer chunks. */
public static void dumpByteString(String tag, String prefix, byte[] buf) { dumpByteString(tag, prefix, 0, buf); }
Print the internal buffer chunks.
/** * Print the internal buffer chunks. */
private static int dumpByteString(String tag, String prefix, int start, byte[] buf) { StringBuffer sb = new StringBuffer(); final int length = buf.length; final int lineLen = 16; int i; for (i=0; i<length; i++) { if (i % lineLen == 0) { if (i != 0) { Log.d(tag, sb.toString()); sb = new StringBuffer(); } sb.append(prefix); sb.append('['); sb.append(start + i); sb.append(']'); sb.append(' '); } else { sb.append(' '); } byte b = buf[i]; byte c = (byte)((b >> 4) & 0x0f); if (c < 10) { sb.append((char)('0' + c)); } else { sb.append((char)('a' - 10 + c)); } byte d = (byte)(b & 0x0f); if (d < 10) { sb.append((char)('0' + d)); } else { sb.append((char)('a' - 10 + d)); } } Log.d(tag, sb.toString()); return length; } }