/*
 * Copyright (C) 2009-2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.renderscript;

import java.lang.Math;


Class for exposing the native RenderScript rs_matrix4x4 type back to the Android system.
/** * Class for exposing the native RenderScript rs_matrix4x4 type back to the Android system. * **/
public class Matrix4f {
Creates a new identity 4x4 matrix
/** * Creates a new identity 4x4 matrix */
public Matrix4f() { mMat = new float[16]; loadIdentity(); }
Creates a new matrix and sets its values from the given parameter
Params:
  • dataArray – values to set the matrix to, must be 16 floats long
/** * Creates a new matrix and sets its values from the given * parameter * * @param dataArray values to set the matrix to, must be 16 * floats long */
public Matrix4f(float[] dataArray) { mMat = new float[16]; System.arraycopy(dataArray, 0, mMat, 0, mMat.length); }
Return a reference to the internal array representing matrix values. Modifying this array will also change the matrix
Returns:internal array representing the matrix
/** * Return a reference to the internal array representing matrix * values. Modifying this array will also change the matrix * * @return internal array representing the matrix */
public float[] getArray() { return mMat; }
Returns the value for a given row and column
Params:
  • x – column of the value to return
  • y – row of the value to return
Returns:value in the yth row and xth column
/** * Returns the value for a given row and column * * @param x column of the value to return * @param y row of the value to return * * @return value in the yth row and xth column */
public float get(int x, int y) { return mMat[x*4 + y]; }
Sets the value for a given row and column
Params:
  • x – column of the value to set
  • y – row of the value to set
/** * Sets the value for a given row and column * * @param x column of the value to set * @param y row of the value to set */
public void set(int x, int y, float v) { mMat[x*4 + y] = v; }
Sets the matrix values to identity
/** * Sets the matrix values to identity */
public void loadIdentity() { mMat[0] = 1; mMat[1] = 0; mMat[2] = 0; mMat[3] = 0; mMat[4] = 0; mMat[5] = 1; mMat[6] = 0; mMat[7] = 0; mMat[8] = 0; mMat[9] = 0; mMat[10] = 1; mMat[11] = 0; mMat[12] = 0; mMat[13] = 0; mMat[14] = 0; mMat[15] = 1; }
Sets the values of the matrix to those of the parameter
Params:
  • src – matrix to load the values from
/** * Sets the values of the matrix to those of the parameter * * @param src matrix to load the values from */
public void load(Matrix4f src) { System.arraycopy(src.getArray(), 0, mMat, 0, mMat.length); }
Sets the values of the matrix to those of the parameter
Params:
  • src – matrix to load the values from
@hide
/** * Sets the values of the matrix to those of the parameter * * @param src matrix to load the values from * @hide */
public void load(Matrix3f src) { mMat[0] = src.mMat[0]; mMat[1] = src.mMat[1]; mMat[2] = src.mMat[2]; mMat[3] = 0; mMat[4] = src.mMat[3]; mMat[5] = src.mMat[4]; mMat[6] = src.mMat[5]; mMat[7] = 0; mMat[8] = src.mMat[6]; mMat[9] = src.mMat[7]; mMat[10] = src.mMat[8]; mMat[11] = 0; mMat[12] = 0; mMat[13] = 0; mMat[14] = 0; mMat[15] = 1; }
Sets current values to be a rotation matrix of certain angle about a given axis
Params:
  • rot – angle of rotation
  • x – rotation axis x
  • y – rotation axis y
  • z – rotation axis z
/** * Sets current values to be a rotation matrix of certain angle * about a given axis * * @param rot angle of rotation * @param x rotation axis x * @param y rotation axis y * @param z rotation axis z */
public void loadRotate(float rot, float x, float y, float z) { float c, s; mMat[3] = 0; mMat[7] = 0; mMat[11]= 0; mMat[12]= 0; mMat[13]= 0; mMat[14]= 0; mMat[15]= 1; rot *= (float)(java.lang.Math.PI / 180.0f); c = (float)java.lang.Math.cos(rot); s = (float)java.lang.Math.sin(rot); float len = (float)java.lang.Math.sqrt(x*x + y*y + z*z); if (!(len != 1)) { float recipLen = 1.f / len; x *= recipLen; y *= recipLen; z *= recipLen; } float nc = 1.0f - c; float xy = x * y; float yz = y * z; float zx = z * x; float xs = x * s; float ys = y * s; float zs = z * s; mMat[ 0] = x*x*nc + c; mMat[ 4] = xy*nc - zs; mMat[ 8] = zx*nc + ys; mMat[ 1] = xy*nc + zs; mMat[ 5] = y*y*nc + c; mMat[ 9] = yz*nc - xs; mMat[ 2] = zx*nc - ys; mMat[ 6] = yz*nc + xs; mMat[10] = z*z*nc + c; }
Sets current values to be a scale matrix of given dimensions
Params:
  • x – scale component x
  • y – scale component y
  • z – scale component z
/** * Sets current values to be a scale matrix of given dimensions * * @param x scale component x * @param y scale component y * @param z scale component z */
public void loadScale(float x, float y, float z) { loadIdentity(); mMat[0] = x; mMat[5] = y; mMat[10] = z; }
Sets current values to be a translation matrix of given dimensions
Params:
  • x – translation component x
  • y – translation component y
  • z – translation component z
/** * Sets current values to be a translation matrix of given * dimensions * * @param x translation component x * @param y translation component y * @param z translation component z */
public void loadTranslate(float x, float y, float z) { loadIdentity(); mMat[12] = x; mMat[13] = y; mMat[14] = z; }
Sets current values to be the result of multiplying two given matrices
Params:
  • lhs – left hand side matrix
  • rhs – right hand side matrix
/** * Sets current values to be the result of multiplying two given * matrices * * @param lhs left hand side matrix * @param rhs right hand side matrix */
public void loadMultiply(Matrix4f lhs, Matrix4f rhs) { for (int i=0 ; i<4 ; i++) { float ri0 = 0; float ri1 = 0; float ri2 = 0; float ri3 = 0; for (int j=0 ; j<4 ; j++) { float rhs_ij = rhs.get(i,j); ri0 += lhs.get(j,0) * rhs_ij; ri1 += lhs.get(j,1) * rhs_ij; ri2 += lhs.get(j,2) * rhs_ij; ri3 += lhs.get(j,3) * rhs_ij; } set(i,0, ri0); set(i,1, ri1); set(i,2, ri2); set(i,3, ri3); } }
Set current values to be an orthographic projection matrix
Params:
  • l – location of the left vertical clipping plane
  • r – location of the right vertical clipping plane
  • b – location of the bottom horizontal clipping plane
  • t – location of the top horizontal clipping plane
  • n – location of the near clipping plane
  • f – location of the far clipping plane
/** * Set current values to be an orthographic projection matrix * * @param l location of the left vertical clipping plane * @param r location of the right vertical clipping plane * @param b location of the bottom horizontal clipping plane * @param t location of the top horizontal clipping plane * @param n location of the near clipping plane * @param f location of the far clipping plane */
public void loadOrtho(float l, float r, float b, float t, float n, float f) { loadIdentity(); mMat[0] = 2 / (r - l); mMat[5] = 2 / (t - b); mMat[10]= -2 / (f - n); mMat[12]= -(r + l) / (r - l); mMat[13]= -(t + b) / (t - b); mMat[14]= -(f + n) / (f - n); }
Set current values to be an orthographic projection matrix with the right and bottom clipping planes set to the given values. Left and top clipping planes are set to 0. Near and far are set to -1, 1 respectively
Params:
  • w – location of the right vertical clipping plane
  • h – location of the bottom horizontal clipping plane
/** * Set current values to be an orthographic projection matrix * with the right and bottom clipping planes set to the given * values. Left and top clipping planes are set to 0. Near and * far are set to -1, 1 respectively * * @param w location of the right vertical clipping plane * @param h location of the bottom horizontal clipping plane * */
public void loadOrthoWindow(int w, int h) { loadOrtho(0,w, h,0, -1,1); }
Sets current values to be a perspective projection matrix
Params:
  • l – location of the left vertical clipping plane
  • r – location of the right vertical clipping plane
  • b – location of the bottom horizontal clipping plane
  • t – location of the top horizontal clipping plane
  • n – location of the near clipping plane, must be positive
  • f – location of the far clipping plane, must be positive
/** * Sets current values to be a perspective projection matrix * * @param l location of the left vertical clipping plane * @param r location of the right vertical clipping plane * @param b location of the bottom horizontal clipping plane * @param t location of the top horizontal clipping plane * @param n location of the near clipping plane, must be positive * @param f location of the far clipping plane, must be positive * */
public void loadFrustum(float l, float r, float b, float t, float n, float f) { loadIdentity(); mMat[0] = 2 * n / (r - l); mMat[5] = 2 * n / (t - b); mMat[8] = (r + l) / (r - l); mMat[9] = (t + b) / (t - b); mMat[10]= -(f + n) / (f - n); mMat[11]= -1; mMat[14]= -2*f*n / (f - n); mMat[15]= 0; }
Sets current values to be a perspective projection matrix
Params:
  • fovy – vertical field of view angle in degrees
  • aspect – aspect ratio of the screen
  • near – near cliping plane, must be positive
  • far – far clipping plane, must be positive
/** * Sets current values to be a perspective projection matrix * * @param fovy vertical field of view angle in degrees * @param aspect aspect ratio of the screen * @param near near cliping plane, must be positive * @param far far clipping plane, must be positive */
public void loadPerspective(float fovy, float aspect, float near, float far) { float top = near * (float)Math.tan((float) (fovy * Math.PI / 360.0f)); float bottom = -top; float left = bottom * aspect; float right = top * aspect; loadFrustum(left, right, bottom, top, near, far); }
Helper function to set the current values to a perspective projection matrix with aspect ratio defined by the parameters and (near, far), (bottom, top) mapping to (-1, 1) at z = 0
Params:
  • w – screen width
  • h – screen height
/** * Helper function to set the current values to a perspective * projection matrix with aspect ratio defined by the parameters * and (near, far), (bottom, top) mapping to (-1, 1) at z = 0 * * @param w screen width * @param h screen height */
public void loadProjectionNormalized(int w, int h) { // range -1,1 in the narrow axis at z = 0. Matrix4f m1 = new Matrix4f(); Matrix4f m2 = new Matrix4f(); if(w > h) { float aspect = ((float)w) / h; m1.loadFrustum(-aspect,aspect, -1,1, 1,100); } else { float aspect = ((float)h) / w; m1.loadFrustum(-1,1, -aspect,aspect, 1,100); } m2.loadRotate(180, 0, 1, 0); m1.loadMultiply(m1, m2); m2.loadScale(-2, 2, 1); m1.loadMultiply(m1, m2); m2.loadTranslate(0, 0, 2); m1.loadMultiply(m1, m2); load(m1); }
Post-multiplies the current matrix by a given parameter
Params:
  • rhs – right hand side to multiply by
/** * Post-multiplies the current matrix by a given parameter * * @param rhs right hand side to multiply by */
public void multiply(Matrix4f rhs) { Matrix4f tmp = new Matrix4f(); tmp.loadMultiply(this, rhs); load(tmp); }
Modifies the current matrix by post-multiplying it with a rotation matrix of certain angle about a given axis
Params:
  • rot – angle of rotation
  • x – rotation axis x
  • y – rotation axis y
  • z – rotation axis z
/** * Modifies the current matrix by post-multiplying it with a * rotation matrix of certain angle about a given axis * * @param rot angle of rotation * @param x rotation axis x * @param y rotation axis y * @param z rotation axis z */
public void rotate(float rot, float x, float y, float z) { Matrix4f tmp = new Matrix4f(); tmp.loadRotate(rot, x, y, z); multiply(tmp); }
Modifies the current matrix by post-multiplying it with a scale matrix of given dimensions
Params:
  • x – scale component x
  • y – scale component y
  • z – scale component z
/** * Modifies the current matrix by post-multiplying it with a * scale matrix of given dimensions * * @param x scale component x * @param y scale component y * @param z scale component z */
public void scale(float x, float y, float z) { Matrix4f tmp = new Matrix4f(); tmp.loadScale(x, y, z); multiply(tmp); }
Modifies the current matrix by post-multiplying it with a translation matrix of given dimensions
Params:
  • x – translation component x
  • y – translation component y
  • z – translation component z
/** * Modifies the current matrix by post-multiplying it with a * translation matrix of given dimensions * * @param x translation component x * @param y translation component y * @param z translation component z */
public void translate(float x, float y, float z) { Matrix4f tmp = new Matrix4f(); tmp.loadTranslate(x, y, z); multiply(tmp); } private float computeCofactor(int i, int j) { int c0 = (i+1) % 4; int c1 = (i+2) % 4; int c2 = (i+3) % 4; int r0 = (j+1) % 4; int r1 = (j+2) % 4; int r2 = (j+3) % 4; float minor = (mMat[c0 + 4*r0] * (mMat[c1 + 4*r1] * mMat[c2 + 4*r2] - mMat[c1 + 4*r2] * mMat[c2 + 4*r1])) - (mMat[c0 + 4*r1] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r2] - mMat[c1 + 4*r2] * mMat[c2 + 4*r0])) + (mMat[c0 + 4*r2] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r1] - mMat[c1 + 4*r1] * mMat[c2 + 4*r0])); float cofactor = ((i+j) & 1) != 0 ? -minor : minor; return cofactor; }
Sets the current matrix to its inverse
/** * Sets the current matrix to its inverse */
public boolean inverse() { Matrix4f result = new Matrix4f(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { result.mMat[4*i + j] = computeCofactor(i, j); } } // Dot product of 0th column of source and 0th row of result float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[1] + mMat[8]*result.mMat[2] + mMat[12]*result.mMat[3]; if (Math.abs(det) < 1e-6) { return false; } det = 1.0f / det; for (int i = 0; i < 16; ++i) { mMat[i] = result.mMat[i] * det; } return true; }
Sets the current matrix to its inverse transpose
/** * Sets the current matrix to its inverse transpose */
public boolean inverseTranspose() { Matrix4f result = new Matrix4f(); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { result.mMat[4*j + i] = computeCofactor(i, j); } } float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[4] + mMat[8]*result.mMat[8] + mMat[12]*result.mMat[12]; if (Math.abs(det) < 1e-6) { return false; } det = 1.0f / det; for (int i = 0; i < 16; ++i) { mMat[i] = result.mMat[i] * det; } return true; }
Sets the current matrix to its transpose
/** * Sets the current matrix to its transpose */
public void transpose() { for(int i = 0; i < 3; ++i) { for(int j = i + 1; j < 4; ++j) { float temp = mMat[i*4 + j]; mMat[i*4 + j] = mMat[j*4 + i]; mMat[j*4 + i] = temp; } } } final float[] mMat; }