/*
 * Copyright (C) 2007 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.opengl;

import javax.microedition.khronos.opengles.GL10;

A set of GL utilities inspired by the OpenGL Utility Toolkit.
/** * A set of GL utilities inspired by the OpenGL Utility Toolkit. * */
public class GLU {
Return an error string from a GL or GLU error code.
Params:
  • error – - a GL or GLU error code.
Returns:the error string for the input error code, or NULL if the input was not a valid GL or GLU error code.
/** * Return an error string from a GL or GLU error code. * * @param error - a GL or GLU error code. * @return the error string for the input error code, or NULL if the input * was not a valid GL or GLU error code. */
public static String gluErrorString(int error) { switch (error) { case GL10.GL_NO_ERROR: return "no error"; case GL10.GL_INVALID_ENUM: return "invalid enum"; case GL10.GL_INVALID_VALUE: return "invalid value"; case GL10.GL_INVALID_OPERATION: return "invalid operation"; case GL10.GL_STACK_OVERFLOW: return "stack overflow"; case GL10.GL_STACK_UNDERFLOW: return "stack underflow"; case GL10.GL_OUT_OF_MEMORY: return "out of memory"; default: return null; } }
Define a viewing transformation in terms of an eye point, a center of view, and an up vector.
Params:
  • gl – a GL10 interface
  • eyeX – eye point X
  • eyeY – eye point Y
  • eyeZ – eye point Z
  • centerX – center of view X
  • centerY – center of view Y
  • centerZ – center of view Z
  • upX – up vector X
  • upY – up vector Y
  • upZ – up vector Z
/** * Define a viewing transformation in terms of an eye point, a center of * view, and an up vector. * * @param gl a GL10 interface * @param eyeX eye point X * @param eyeY eye point Y * @param eyeZ eye point Z * @param centerX center of view X * @param centerY center of view Y * @param centerZ center of view Z * @param upX up vector X * @param upY up vector Y * @param upZ up vector Z */
public static void gluLookAt(GL10 gl, float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ) { float[] scratch = sScratch; synchronized(scratch) { Matrix.setLookAtM(scratch, 0, eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ); gl.glMultMatrixf(scratch, 0); } }
Set up a 2D orthographic projection matrix
Params:
  • gl –
  • left –
  • right –
  • bottom –
  • top –
/** * Set up a 2D orthographic projection matrix * * @param gl * @param left * @param right * @param bottom * @param top */
public static void gluOrtho2D(GL10 gl, float left, float right, float bottom, float top) { gl.glOrthof(left, right, bottom, top, -1.0f, 1.0f); }
Set up a perspective projection matrix
Params:
  • gl – a GL10 interface
  • fovy – specifies the field of view angle, in degrees, in the Y direction.
  • aspect – specifies the aspect ration that determins the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
  • zNear – specifies the distance from the viewer to the near clipping plane (always positive).
  • zFar – specifies the distance from the viewer to the far clipping plane (always positive).
/** * Set up a perspective projection matrix * * @param gl a GL10 interface * @param fovy specifies the field of view angle, in degrees, in the Y * direction. * @param aspect specifies the aspect ration that determins the field of * view in the x direction. The aspect ratio is the ratio of x * (width) to y (height). * @param zNear specifies the distance from the viewer to the near clipping * plane (always positive). * @param zFar specifies the distance from the viewer to the far clipping * plane (always positive). */
public static void gluPerspective(GL10 gl, float fovy, float aspect, float zNear, float zFar) { float top = zNear * (float) Math.tan(fovy * (Math.PI / 360.0)); float bottom = -top; float left = bottom * aspect; float right = top * aspect; gl.glFrustumf(left, right, bottom, top, zNear, zFar); }
Map object coordinates into window coordinates. gluProject transforms the specified object coordinates into window coordinates using model, proj, and view. The result is stored in win.

Note that you can use the OES_matrix_get extension, if present, to get the current modelView and projection matrices.

Params:
  • objX – object coordinates X
  • objY – object coordinates Y
  • objZ – object coordinates Z
  • model – the current modelview matrix
  • modelOffset – the offset into the model array where the modelview maxtrix data starts.
  • project – the current projection matrix
  • projectOffset – the offset into the project array where the project matrix data starts.
  • view – the current view, {x, y, width, height}
  • viewOffset – the offset into the view array where the view vector data starts.
  • win – the output vector {winX, winY, winZ}, that returns the computed window coordinates.
  • winOffset – the offset into the win array where the win vector data starts.
Returns:A return value of GL_TRUE indicates success, a return value of GL_FALSE indicates failure.
/** * Map object coordinates into window coordinates. gluProject transforms the * specified object coordinates into window coordinates using model, proj, * and view. The result is stored in win. * <p> * Note that you can use the OES_matrix_get extension, if present, to get * the current modelView and projection matrices. * * @param objX object coordinates X * @param objY object coordinates Y * @param objZ object coordinates Z * @param model the current modelview matrix * @param modelOffset the offset into the model array where the modelview * maxtrix data starts. * @param project the current projection matrix * @param projectOffset the offset into the project array where the project * matrix data starts. * @param view the current view, {x, y, width, height} * @param viewOffset the offset into the view array where the view vector * data starts. * @param win the output vector {winX, winY, winZ}, that returns the * computed window coordinates. * @param winOffset the offset into the win array where the win vector data * starts. * @return A return value of GL_TRUE indicates success, a return value of * GL_FALSE indicates failure. */
public static int gluProject(float objX, float objY, float objZ, float[] model, int modelOffset, float[] project, int projectOffset, int[] view, int viewOffset, float[] win, int winOffset) { float[] scratch = sScratch; synchronized(scratch) { final int M_OFFSET = 0; // 0..15 final int V_OFFSET = 16; // 16..19 final int V2_OFFSET = 20; // 20..23 Matrix.multiplyMM(scratch, M_OFFSET, project, projectOffset, model, modelOffset); scratch[V_OFFSET + 0] = objX; scratch[V_OFFSET + 1] = objY; scratch[V_OFFSET + 2] = objZ; scratch[V_OFFSET + 3] = 1.0f; Matrix.multiplyMV(scratch, V2_OFFSET, scratch, M_OFFSET, scratch, V_OFFSET); float w = scratch[V2_OFFSET + 3]; if (w == 0.0f) { return GL10.GL_FALSE; } float rw = 1.0f / w; win[winOffset] = view[viewOffset] + view[viewOffset + 2] * (scratch[V2_OFFSET + 0] * rw + 1.0f) * 0.5f; win[winOffset + 1] = view[viewOffset + 1] + view[viewOffset + 3] * (scratch[V2_OFFSET + 1] * rw + 1.0f) * 0.5f; win[winOffset + 2] = (scratch[V2_OFFSET + 2] * rw + 1.0f) * 0.5f; } return GL10.GL_TRUE; }
Map window coordinates to object coordinates. gluUnProject maps the specified window coordinates into object coordinates using model, proj, and view. The result is stored in obj.

Note that you can use the OES_matrix_get extension, if present, to get the current modelView and projection matrices.

Params:
  • winX – window coordinates X
  • winY – window coordinates Y
  • winZ – window coordinates Z
  • model – the current modelview matrix
  • modelOffset – the offset into the model array where the modelview maxtrix data starts.
  • project – the current projection matrix
  • projectOffset – the offset into the project array where the project matrix data starts.
  • view – the current view, {x, y, width, height}
  • viewOffset – the offset into the view array where the view vector data starts.
  • obj – the output vector {objX, objY, objZ, objW}, that returns the computed homogeneous object coordinates.
  • objOffset – the offset into the obj array where the obj vector data starts.
Returns:A return value of GL10.GL_TRUE indicates success, a return value of GL10.GL_FALSE indicates failure.
/** * Map window coordinates to object coordinates. gluUnProject maps the * specified window coordinates into object coordinates using model, proj, * and view. The result is stored in obj. * <p> * Note that you can use the OES_matrix_get extension, if present, to get * the current modelView and projection matrices. * * @param winX window coordinates X * @param winY window coordinates Y * @param winZ window coordinates Z * @param model the current modelview matrix * @param modelOffset the offset into the model array where the modelview * maxtrix data starts. * @param project the current projection matrix * @param projectOffset the offset into the project array where the project * matrix data starts. * @param view the current view, {x, y, width, height} * @param viewOffset the offset into the view array where the view vector * data starts. * @param obj the output vector {objX, objY, objZ, objW}, that returns the * computed homogeneous object coordinates. * @param objOffset the offset into the obj array where the obj vector data * starts. * @return A return value of GL10.GL_TRUE indicates success, a return value * of GL10.GL_FALSE indicates failure. */
public static int gluUnProject(float winX, float winY, float winZ, float[] model, int modelOffset, float[] project, int projectOffset, int[] view, int viewOffset, float[] obj, int objOffset) { float[] scratch = sScratch; synchronized(scratch) { final int PM_OFFSET = 0; // 0..15 final int INVPM_OFFSET = 16; // 16..31 final int V_OFFSET = 0; // 0..3 Reuses PM_OFFSET space Matrix.multiplyMM(scratch, PM_OFFSET, project, projectOffset, model, modelOffset); if (!Matrix.invertM(scratch, INVPM_OFFSET, scratch, PM_OFFSET)) { return GL10.GL_FALSE; } scratch[V_OFFSET + 0] = 2.0f * (winX - view[viewOffset + 0]) / view[viewOffset + 2] - 1.0f; scratch[V_OFFSET + 1] = 2.0f * (winY - view[viewOffset + 1]) / view[viewOffset + 3] - 1.0f; scratch[V_OFFSET + 2] = 2.0f * winZ - 1.0f; scratch[V_OFFSET + 3] = 1.0f; Matrix.multiplyMV(obj, objOffset, scratch, INVPM_OFFSET, scratch, V_OFFSET); } return GL10.GL_TRUE; } private static final float[] sScratch = new float[32]; }