/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.dht;

import java.io.DataInput;
import java.io.IOException;
import java.io.Serializable;
import java.util.Collection;
import java.util.List;

import org.apache.cassandra.db.DecoratedKey;
import org.apache.cassandra.db.PartitionPosition;
import org.apache.cassandra.db.TypeSizes;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.io.util.DataOutputPlus;
import org.apache.cassandra.net.MessagingService;
import org.apache.cassandra.utils.Pair;

public abstract class AbstractBounds<T extends RingPosition<T>> implements Serializable
{
    private static final long serialVersionUID = 1L;
    public static final IPartitionerDependentSerializer<AbstractBounds<Token>> tokenSerializer =
            new AbstractBoundsSerializer<Token>(Token.serializer);
    public static final IPartitionerDependentSerializer<AbstractBounds<PartitionPosition>> rowPositionSerializer =
            new AbstractBoundsSerializer<PartitionPosition>(PartitionPosition.serializer);

    private enum Type
    {
        RANGE,
        BOUNDS
    }

    public final T left;
    public final T right;

    public AbstractBounds(T left, T right)
    {
        assert left.getPartitioner() == right.getPartitioner();
        this.left = left;
        this.right = right;
    }

    
Given token T and AbstractBounds ?L,R?, returns Pair(?L,T], (T,R?), where ? means that the same type of AbstractBounds is returned as the original. Put another way, returns a Pair of everything this AbstractBounds contains up to and including the split position, and everything it contains after (not including the split position). The original AbstractBounds must either contain the position T, or T should be equals to the left bound L. If the split would only yield the same AbstractBound, null is returned instead.
/** * Given token T and AbstractBounds ?L,R?, returns Pair(?L,T], (T,R?), * where ? means that the same type of AbstractBounds is returned as the original. * * Put another way, returns a Pair of everything this AbstractBounds contains * up to and including the split position, and everything it contains after * (not including the split position). * * The original AbstractBounds must either contain the position T, or T * should be equals to the left bound L. * * If the split would only yield the same AbstractBound, null is returned * instead. */
public abstract Pair<AbstractBounds<T>, AbstractBounds<T>> split(T position); public abstract boolean inclusiveLeft(); public abstract boolean inclusiveRight();
Whether left and right forms a wrapping interval, that is if unwrapping wouldn't be a no-op.

Note that the semantic is slightly different from Range.isWrapAround() in the sense that if both right are minimal (for the partitioner), this methods return false (doesn't wrap) while Range.isWrapAround() returns true (does wrap). This is confusing and we should fix it by refactoring/rewriting the whole AbstractBounds hierarchy with cleaner semantics, but we don't want to risk breaking something by changing Range.isWrapAround() in the meantime.

/** * Whether {@code left} and {@code right} forms a wrapping interval, that is if unwrapping wouldn't be a no-op. * <p> * Note that the semantic is slightly different from {@link Range#isWrapAround()} in the sense that if both * {@code right} are minimal (for the partitioner), this methods return false (doesn't wrap) while * {@link Range#isWrapAround()} returns true (does wrap). This is confusing and we should fix it by * refactoring/rewriting the whole AbstractBounds hierarchy with cleaner semantics, but we don't want to risk * breaking something by changing {@link Range#isWrapAround()} in the meantime. */
public static <T extends RingPosition<T>> boolean strictlyWrapsAround(T left, T right) { return !(left.compareTo(right) <= 0 || right.isMinimum()); } public static <T extends RingPosition<T>> boolean noneStrictlyWrapsAround(Collection<AbstractBounds<T>> bounds) { for (AbstractBounds<T> b : bounds) { if (strictlyWrapsAround(b.left, b.right)) return false; } return true; } @Override public int hashCode() { return 31 * left.hashCode() + right.hashCode(); }
return true if @param range intersects any of the given @param ranges
/** return true if @param range intersects any of the given @param ranges */
public boolean intersects(Iterable<Range<T>> ranges) { for (Range<T> range2 : ranges) { if (range2.intersects(this)) return true; } return false; } public abstract boolean contains(T start); public abstract List<? extends AbstractBounds<T>> unwrap(); public String getString(AbstractType<?> keyValidator) { return getOpeningString() + format(left, keyValidator) + ", " + format(right, keyValidator) + getClosingString(); } private String format(T value, AbstractType<?> keyValidator) { if (value instanceof DecoratedKey) { return keyValidator.getString(((DecoratedKey)value).getKey()); } else { return value.toString(); } } protected abstract String getOpeningString(); protected abstract String getClosingString(); public abstract boolean isStartInclusive(); public abstract boolean isEndInclusive(); public abstract AbstractBounds<T> withNewRight(T newRight); public static class AbstractBoundsSerializer<T extends RingPosition<T>> implements IPartitionerDependentSerializer<AbstractBounds<T>> { private static final int IS_TOKEN_FLAG = 0x01; private static final int START_INCLUSIVE_FLAG = 0x02; private static final int END_INCLUSIVE_FLAG = 0x04; IPartitionerDependentSerializer<T> serializer; // Use for pre-3.0 protocol private static int kindInt(AbstractBounds<?> ab) { int kind = ab instanceof Range ? Type.RANGE.ordinal() : Type.BOUNDS.ordinal(); if (!(ab.left instanceof Token)) kind = -(kind + 1); return kind; } // For from 3.0 onwards private static int kindFlags(AbstractBounds<?> ab) { int flags = 0; if (ab.left instanceof Token) flags |= IS_TOKEN_FLAG; if (ab.isStartInclusive()) flags |= START_INCLUSIVE_FLAG; if (ab.isEndInclusive()) flags |= END_INCLUSIVE_FLAG; return flags; } public AbstractBoundsSerializer(IPartitionerDependentSerializer<T> serializer) { this.serializer = serializer; } public void serialize(AbstractBounds<T> range, DataOutputPlus out, int version) throws IOException { /* * The first int tells us if it's a range or bounds (depending on the value) _and_ if it's tokens or keys (depending on the * sign). We use negative kind for keys so as to preserve the serialization of token from older version. */ if (version < MessagingService.VERSION_30) out.writeInt(kindInt(range)); else out.writeByte(kindFlags(range)); serializer.serialize(range.left, out, version); serializer.serialize(range.right, out, version); } public AbstractBounds<T> deserialize(DataInput in, IPartitioner p, int version) throws IOException { boolean isToken, startInclusive, endInclusive; if (version < MessagingService.VERSION_30) { int kind = in.readInt(); isToken = kind >= 0; if (!isToken) kind = -(kind+1); // Pre-3.0, everything that wasa not a Range was (wrongly) serialized as a Bound; startInclusive = kind != Type.RANGE.ordinal(); endInclusive = true; } else { int flags = in.readUnsignedByte(); isToken = (flags & IS_TOKEN_FLAG) != 0; startInclusive = (flags & START_INCLUSIVE_FLAG) != 0; endInclusive = (flags & END_INCLUSIVE_FLAG) != 0; } T left = serializer.deserialize(in, p, version); T right = serializer.deserialize(in, p, version); assert isToken == left instanceof Token; if (startInclusive) return endInclusive ? new Bounds<T>(left, right) : new IncludingExcludingBounds<T>(left, right); else return endInclusive ? new Range<T>(left, right) : new ExcludingBounds<T>(left, right); } public long serializedSize(AbstractBounds<T> ab, int version) { int size = version < MessagingService.VERSION_30 ? TypeSizes.sizeof(kindInt(ab)) : 1; size += serializer.serializedSize(ab.left, version); size += serializer.serializedSize(ab.right, version); return size; } } public static <T extends RingPosition<T>> AbstractBounds<T> bounds(Boundary<T> min, Boundary<T> max) { return bounds(min.boundary, min.inclusive, max.boundary, max.inclusive); } public static <T extends RingPosition<T>> AbstractBounds<T> bounds(T min, boolean inclusiveMin, T max, boolean inclusiveMax) { if (inclusiveMin && inclusiveMax) return new Bounds<T>(min, max); else if (inclusiveMax) return new Range<T>(min, max); else if (inclusiveMin) return new IncludingExcludingBounds<T>(min, max); else return new ExcludingBounds<T>(min, max); } // represents one side of a bounds (which side is not encoded) public static class Boundary<T extends RingPosition<T>> { public final T boundary; public final boolean inclusive; public Boundary(T boundary, boolean inclusive) { this.boundary = boundary; this.inclusive = inclusive; } } public Boundary<T> leftBoundary() { return new Boundary<>(left, inclusiveLeft()); } public Boundary<T> rightBoundary() { return new Boundary<>(right, inclusiveRight()); } public static <T extends RingPosition<T>> boolean isEmpty(Boundary<T> left, Boundary<T> right) { int c = left.boundary.compareTo(right.boundary); return c > 0 || (c == 0 && !(left.inclusive && right.inclusive)); } public static <T extends RingPosition<T>> Boundary<T> minRight(Boundary<T> right1, T right2, boolean isInclusiveRight2) { return minRight(right1, new Boundary<T>(right2, isInclusiveRight2)); } public static <T extends RingPosition<T>> Boundary<T> minRight(Boundary<T> right1, Boundary<T> right2) { int c = right1.boundary.compareTo(right2.boundary); if (c != 0) return c < 0 ? right1 : right2; // return the exclusive version, if either return right2.inclusive ? right1 : right2; } public static <T extends RingPosition<T>> Boundary<T> maxLeft(Boundary<T> left1, T left2, boolean isInclusiveLeft2) { return maxLeft(left1, new Boundary<T>(left2, isInclusiveLeft2)); } public static <T extends RingPosition<T>> Boundary<T> maxLeft(Boundary<T> left1, Boundary<T> left2) { int c = left1.boundary.compareTo(left2.boundary); if (c != 0) return c > 0 ? left1 : left2; // return the exclusive version, if either return left2.inclusive ? left1 : left2; } }