/*
 * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.io.*;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.BiFunction;
import jdk.internal.misc.SharedSecrets;

This class implements a hash table, which maps keys to values. Any non-null object can be used as a key or as a value.

To successfully store and retrieve objects from a hashtable, the objects used as keys must implement the hashCode method and the equals method.

An instance of Hashtable has two parameters that affect its performance: initial capacity and load factor. The capacity is the number of buckets in the hash table, and the initial capacity is simply the capacity at the time the hash table is created. Note that the hash table is open: in the case of a "hash collision", a single bucket stores multiple entries, which must be searched sequentially. The load factor is a measure of how full the hash table is allowed to get before its capacity is automatically increased. The initial capacity and load factor parameters are merely hints to the implementation. The exact details as to when and whether the rehash method is invoked are implementation-dependent.

Generally, the default load factor (.75) offers a good tradeoff between time and space costs. Higher values decrease the space overhead but increase the time cost to look up an entry (which is reflected in most Hashtable operations, including get and put).

The initial capacity controls a tradeoff between wasted space and the need for rehash operations, which are time-consuming. No rehash operations will ever occur if the initial capacity is greater than the maximum number of entries the Hashtable will contain divided by its load factor. However, setting the initial capacity too high can waste space.

If many entries are to be made into a Hashtable, creating it with a sufficiently large capacity may allow the entries to be inserted more efficiently than letting it perform automatic rehashing as needed to grow the table.

This example creates a hashtable of numbers. It uses the names of the numbers as keys:

 
  Hashtable<String, Integer> numbers
    = new Hashtable<String, Integer>();
  numbers.put("one", 1);
  numbers.put("two", 2);
  numbers.put("three", 3);

To retrieve a number, use the following code:

 
  Integer n = numbers.get("two");
  if (n != null) {
    System.out.println("two = " + n);
  }

The iterators returned by the iterator method of the collections returned by all of this class's "collection view methods" are fail-fast: if the Hashtable is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove method, the iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future. The Enumerations returned by Hashtable's keys and elements methods are not fail-fast; if the Hashtable is structurally modified at any time after the enumeration is created then the results of enumerating are undefined.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

As of the Java 2 platform v1.2, this class was retrofitted to implement the Map interface, making it a member of the Java Collections Framework. Unlike the new collection implementations, Hashtable is synchronized. If a thread-safe implementation is not needed, it is recommended to use HashMap in place of Hashtable. If a thread-safe highly-concurrent implementation is desired, then it is recommended to use ConcurrentHashMap in place of Hashtable.

Author: Arthur van Hoff, Josh Bloch, Neal Gafter
Type parameters:
  • <K> – the type of keys maintained by this map
  • <V> – the type of mapped values
See Also:
Since:1.0
/** * This class implements a hash table, which maps keys to values. Any * non-{@code null} object can be used as a key or as a value. <p> * * To successfully store and retrieve objects from a hashtable, the * objects used as keys must implement the {@code hashCode} * method and the {@code equals} method. <p> * * An instance of {@code Hashtable} has two parameters that affect its * performance: <i>initial capacity</i> and <i>load factor</i>. The * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the * <i>initial capacity</i> is simply the capacity at the time the hash table * is created. Note that the hash table is <i>open</i>: in the case of a "hash * collision", a single bucket stores multiple entries, which must be searched * sequentially. The <i>load factor</i> is a measure of how full the hash * table is allowed to get before its capacity is automatically increased. * The initial capacity and load factor parameters are merely hints to * the implementation. The exact details as to when and whether the rehash * method is invoked are implementation-dependent.<p> * * Generally, the default load factor (.75) offers a good tradeoff between * time and space costs. Higher values decrease the space overhead but * increase the time cost to look up an entry (which is reflected in most * {@code Hashtable} operations, including {@code get} and {@code put}).<p> * * The initial capacity controls a tradeoff between wasted space and the * need for {@code rehash} operations, which are time-consuming. * No {@code rehash} operations will <i>ever</i> occur if the initial * capacity is greater than the maximum number of entries the * {@code Hashtable} will contain divided by its load factor. However, * setting the initial capacity too high can waste space.<p> * * If many entries are to be made into a {@code Hashtable}, * creating it with a sufficiently large capacity may allow the * entries to be inserted more efficiently than letting it perform * automatic rehashing as needed to grow the table. <p> * * This example creates a hashtable of numbers. It uses the names of * the numbers as keys: * <pre> {@code * Hashtable<String, Integer> numbers * = new Hashtable<String, Integer>(); * numbers.put("one", 1); * numbers.put("two", 2); * numbers.put("three", 3);}</pre> * * <p>To retrieve a number, use the following code: * <pre> {@code * Integer n = numbers.get("two"); * if (n != null) { * System.out.println("two = " + n); * }}</pre> * * <p>The iterators returned by the {@code iterator} method of the collections * returned by all of this class's "collection view methods" are * <em>fail-fast</em>: if the Hashtable is structurally modified at any time * after the iterator is created, in any way except through the iterator's own * {@code remove} method, the iterator will throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the future. * The Enumerations returned by Hashtable's {@link #keys keys} and * {@link #elements elements} methods are <em>not</em> fail-fast; if the * Hashtable is structurally modified at any time after the enumeration is * created then the results of enumerating are undefined. * * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: <i>the fail-fast behavior of iterators * should be used only to detect bugs.</i> * * <p>As of the Java 2 platform v1.2, this class was retrofitted to * implement the {@link Map} interface, making it a member of the * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> * * Java Collections Framework</a>. Unlike the new collection * implementations, {@code Hashtable} is synchronized. If a * thread-safe implementation is not needed, it is recommended to use * {@link HashMap} in place of {@code Hashtable}. If a thread-safe * highly-concurrent implementation is desired, then it is recommended * to use {@link java.util.concurrent.ConcurrentHashMap} in place of * {@code Hashtable}. * * @param <K> the type of keys maintained by this map * @param <V> the type of mapped values * * @author Arthur van Hoff * @author Josh Bloch * @author Neal Gafter * @see Object#equals(java.lang.Object) * @see Object#hashCode() * @see Hashtable#rehash() * @see Collection * @see Map * @see HashMap * @see TreeMap * @since 1.0 */
public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>, Cloneable, java.io.Serializable {
The hash table data.
/** * The hash table data. */
private transient Entry<?,?>[] table;
The total number of entries in the hash table.
/** * The total number of entries in the hash table. */
private transient int count;
The table is rehashed when its size exceeds this threshold. (The value of this field is (int)(capacity * loadFactor).)
@serial
/** * The table is rehashed when its size exceeds this threshold. (The * value of this field is (int)(capacity * loadFactor).) * * @serial */
private int threshold;
The load factor for the hashtable.
@serial
/** * The load factor for the hashtable. * * @serial */
private float loadFactor;
The number of times this Hashtable has been structurally modified Structural modifications are those that change the number of entries in the Hashtable or otherwise modify its internal structure (e.g., rehash). This field is used to make iterators on Collection-views of the Hashtable fail-fast. (See ConcurrentModificationException).
/** * The number of times this Hashtable has been structurally modified * Structural modifications are those that change the number of entries in * the Hashtable or otherwise modify its internal structure (e.g., * rehash). This field is used to make iterators on Collection-views of * the Hashtable fail-fast. (See ConcurrentModificationException). */
private transient int modCount = 0;
use serialVersionUID from JDK 1.0.2 for interoperability
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = 1421746759512286392L;
Constructs a new, empty hashtable with the specified initial capacity and the specified load factor.
Params:
  • initialCapacity – the initial capacity of the hashtable.
  • loadFactor – the load factor of the hashtable.
Throws:
/** * Constructs a new, empty hashtable with the specified initial * capacity and the specified load factor. * * @param initialCapacity the initial capacity of the hashtable. * @param loadFactor the load factor of the hashtable. * @exception IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive. */
public Hashtable(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0) initialCapacity = 1; this.loadFactor = loadFactor; table = new Entry<?,?>[initialCapacity]; threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1); }
Constructs a new, empty hashtable with the specified initial capacity and default load factor (0.75).
Params:
  • initialCapacity – the initial capacity of the hashtable.
Throws:
/** * Constructs a new, empty hashtable with the specified initial capacity * and default load factor (0.75). * * @param initialCapacity the initial capacity of the hashtable. * @exception IllegalArgumentException if the initial capacity is less * than zero. */
public Hashtable(int initialCapacity) { this(initialCapacity, 0.75f); }
Constructs a new, empty hashtable with a default initial capacity (11) and load factor (0.75).
/** * Constructs a new, empty hashtable with a default initial capacity (11) * and load factor (0.75). */
public Hashtable() { this(11, 0.75f); }
Constructs a new hashtable with the same mappings as the given Map. The hashtable is created with an initial capacity sufficient to hold the mappings in the given Map and a default load factor (0.75).
Params:
  • t – the map whose mappings are to be placed in this map.
Throws:
Since: 1.2
/** * Constructs a new hashtable with the same mappings as the given * Map. The hashtable is created with an initial capacity sufficient to * hold the mappings in the given Map and a default load factor (0.75). * * @param t the map whose mappings are to be placed in this map. * @throws NullPointerException if the specified map is null. * @since 1.2 */
public Hashtable(Map<? extends K, ? extends V> t) { this(Math.max(2*t.size(), 11), 0.75f); putAll(t); }
A constructor chained from Properties keeps Hashtable fields uninitialized since they are not used.
Params:
  • dummy – a dummy parameter
/** * A constructor chained from {@link Properties} keeps Hashtable fields * uninitialized since they are not used. * * @param dummy a dummy parameter */
Hashtable(Void dummy) {}
Returns the number of keys in this hashtable.
Returns: the number of keys in this hashtable.
/** * Returns the number of keys in this hashtable. * * @return the number of keys in this hashtable. */
public synchronized int size() { return count; }
Tests if this hashtable maps no keys to values.
Returns: true if this hashtable maps no keys to values; false otherwise.
/** * Tests if this hashtable maps no keys to values. * * @return {@code true} if this hashtable maps no keys to values; * {@code false} otherwise. */
public synchronized boolean isEmpty() { return count == 0; }
Returns an enumeration of the keys in this hashtable. Use the Enumeration methods on the returned object to fetch the keys sequentially. If the hashtable is structurally modified while enumerating over the keys then the results of enumerating are undefined.
See Also:
Returns: an enumeration of the keys in this hashtable.
/** * Returns an enumeration of the keys in this hashtable. * Use the Enumeration methods on the returned object to fetch the keys * sequentially. If the hashtable is structurally modified while enumerating * over the keys then the results of enumerating are undefined. * * @return an enumeration of the keys in this hashtable. * @see Enumeration * @see #elements() * @see #keySet() * @see Map */
public synchronized Enumeration<K> keys() { return this.<K>getEnumeration(KEYS); }
Returns an enumeration of the values in this hashtable. Use the Enumeration methods on the returned object to fetch the elements sequentially. If the hashtable is structurally modified while enumerating over the values then the results of enumerating are undefined.
See Also:
Returns: an enumeration of the values in this hashtable.
/** * Returns an enumeration of the values in this hashtable. * Use the Enumeration methods on the returned object to fetch the elements * sequentially. If the hashtable is structurally modified while enumerating * over the values then the results of enumerating are undefined. * * @return an enumeration of the values in this hashtable. * @see java.util.Enumeration * @see #keys() * @see #values() * @see Map */
public synchronized Enumeration<V> elements() { return this.<V>getEnumeration(VALUES); }
Tests if some key maps into the specified value in this hashtable. This operation is more expensive than the containsKey method.

Note that this method is identical in functionality to containsValue, (which is part of the Map interface in the collections framework).

Params:
  • value – a value to search for
Throws:
Returns: true if and only if some key maps to the value argument in this hashtable as determined by the equals method; false otherwise.
/** * Tests if some key maps into the specified value in this hashtable. * This operation is more expensive than the {@link #containsKey * containsKey} method. * * <p>Note that this method is identical in functionality to * {@link #containsValue containsValue}, (which is part of the * {@link Map} interface in the collections framework). * * @param value a value to search for * @return {@code true} if and only if some key maps to the * {@code value} argument in this hashtable as * determined by the {@code equals} method; * {@code false} otherwise. * @exception NullPointerException if the value is {@code null} */
public synchronized boolean contains(Object value) { if (value == null) { throw new NullPointerException(); } Entry<?,?> tab[] = table; for (int i = tab.length ; i-- > 0 ;) { for (Entry<?,?> e = tab[i] ; e != null ; e = e.next) { if (e.value.equals(value)) { return true; } } } return false; }
Returns true if this hashtable maps one or more keys to this value.

Note that this method is identical in functionality to contains (which predates the Map interface).

Params:
  • value – value whose presence in this hashtable is to be tested
Throws:
Returns:true if this map maps one or more keys to the specified value
Since:1.2
/** * Returns true if this hashtable maps one or more keys to this value. * * <p>Note that this method is identical in functionality to {@link * #contains contains} (which predates the {@link Map} interface). * * @param value value whose presence in this hashtable is to be tested * @return {@code true} if this map maps one or more keys to the * specified value * @throws NullPointerException if the value is {@code null} * @since 1.2 */
public boolean containsValue(Object value) { return contains(value); }
Tests if the specified object is a key in this hashtable.
Params:
  • key – possible key
Throws:
See Also:
Returns: true if and only if the specified object is a key in this hashtable, as determined by the equals method; false otherwise.
/** * Tests if the specified object is a key in this hashtable. * * @param key possible key * @return {@code true} if and only if the specified object * is a key in this hashtable, as determined by the * {@code equals} method; {@code false} otherwise. * @throws NullPointerException if the key is {@code null} * @see #contains(Object) */
public synchronized boolean containsKey(Object key) { Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return true; } } return false; }
Returns the value to which the specified key is mapped, or null if this map contains no mapping for the key.

More formally, if this map contains a mapping from a key k to a value v such that (key.equals(k)), then this method returns v; otherwise it returns null. (There can be at most one such mapping.)

Params:
  • key – the key whose associated value is to be returned
Throws:
See Also:
Returns:the value to which the specified key is mapped, or null if this map contains no mapping for the key
/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key.equals(k))}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @param key the key whose associated value is to be returned * @return the value to which the specified key is mapped, or * {@code null} if this map contains no mapping for the key * @throws NullPointerException if the specified key is null * @see #put(Object, Object) */
@SuppressWarnings("unchecked") public synchronized V get(Object key) { Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { return (V)e.value; } } return null; }
The maximum size of array to allocate. Some VMs reserve some header words in an array. Attempts to allocate larger arrays may result in OutOfMemoryError: Requested array size exceeds VM limit
/** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
Increases the capacity of and internally reorganizes this hashtable, in order to accommodate and access its entries more efficiently. This method is called automatically when the number of keys in the hashtable exceeds this hashtable's capacity and load factor.
/** * Increases the capacity of and internally reorganizes this * hashtable, in order to accommodate and access its entries more * efficiently. This method is called automatically when the * number of keys in the hashtable exceeds this hashtable's capacity * and load factor. */
@SuppressWarnings("unchecked") protected void rehash() { int oldCapacity = table.length; Entry<?,?>[] oldMap = table; // overflow-conscious code int newCapacity = (oldCapacity << 1) + 1; if (newCapacity - MAX_ARRAY_SIZE > 0) { if (oldCapacity == MAX_ARRAY_SIZE) // Keep running with MAX_ARRAY_SIZE buckets return; newCapacity = MAX_ARRAY_SIZE; } Entry<?,?>[] newMap = new Entry<?,?>[newCapacity]; modCount++; threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); table = newMap; for (int i = oldCapacity ; i-- > 0 ;) { for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) { Entry<K,V> e = old; old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity; e.next = (Entry<K,V>)newMap[index]; newMap[index] = e; } } } private void addEntry(int hash, K key, V value, int index) { Entry<?,?> tab[] = table; if (count >= threshold) { // Rehash the table if the threshold is exceeded rehash(); tab = table; hash = key.hashCode(); index = (hash & 0x7FFFFFFF) % tab.length; } // Creates the new entry. @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>) tab[index]; tab[index] = new Entry<>(hash, key, value, e); count++; modCount++; }
Maps the specified key to the specified value in this hashtable. Neither the key nor the value can be null.

The value can be retrieved by calling the get method with a key that is equal to the original key.

Params:
  • key – the hashtable key
  • value – the value
Throws:
See Also:
Returns: the previous value of the specified key in this hashtable, or null if it did not have one
/** * Maps the specified {@code key} to the specified * {@code value} in this hashtable. Neither the key nor the * value can be {@code null}. <p> * * The value can be retrieved by calling the {@code get} method * with a key that is equal to the original key. * * @param key the hashtable key * @param value the value * @return the previous value of the specified key in this hashtable, * or {@code null} if it did not have one * @exception NullPointerException if the key or value is * {@code null} * @see Object#equals(Object) * @see #get(Object) */
public synchronized V put(K key, V value) { // Make sure the value is not null if (value == null) { throw new NullPointerException(); } // Makes sure the key is not already in the hashtable. Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> entry = (Entry<K,V>)tab[index]; for(; entry != null ; entry = entry.next) { if ((entry.hash == hash) && entry.key.equals(key)) { V old = entry.value; entry.value = value; return old; } } addEntry(hash, key, value, index); return null; }
Removes the key (and its corresponding value) from this hashtable. This method does nothing if the key is not in the hashtable.
Params:
  • key – the key that needs to be removed
Throws:
Returns: the value to which the key had been mapped in this hashtable, or null if the key did not have a mapping
/** * Removes the key (and its corresponding value) from this * hashtable. This method does nothing if the key is not in the hashtable. * * @param key the key that needs to be removed * @return the value to which the key had been mapped in this hashtable, * or {@code null} if the key did not have a mapping * @throws NullPointerException if the key is {@code null} */
public synchronized V remove(Object key) { Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for(Entry<K,V> prev = null ; e != null ; prev = e, e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } modCount++; count--; V oldValue = e.value; e.value = null; return oldValue; } } return null; }
Copies all of the mappings from the specified map to this hashtable. These mappings will replace any mappings that this hashtable had for any of the keys currently in the specified map.
Params:
  • t – mappings to be stored in this map
Throws:
Since:1.2
/** * Copies all of the mappings from the specified map to this hashtable. * These mappings will replace any mappings that this hashtable had for any * of the keys currently in the specified map. * * @param t mappings to be stored in this map * @throws NullPointerException if the specified map is null * @since 1.2 */
public synchronized void putAll(Map<? extends K, ? extends V> t) { for (Map.Entry<? extends K, ? extends V> e : t.entrySet()) put(e.getKey(), e.getValue()); }
Clears this hashtable so that it contains no keys.
/** * Clears this hashtable so that it contains no keys. */
public synchronized void clear() { Entry<?,?> tab[] = table; for (int index = tab.length; --index >= 0; ) tab[index] = null; modCount++; count = 0; }
Creates a shallow copy of this hashtable. All the structure of the hashtable itself is copied, but the keys and values are not cloned. This is a relatively expensive operation.
Returns: a clone of the hashtable
/** * Creates a shallow copy of this hashtable. All the structure of the * hashtable itself is copied, but the keys and values are not cloned. * This is a relatively expensive operation. * * @return a clone of the hashtable */
public synchronized Object clone() { Hashtable<?,?> t = cloneHashtable(); t.table = new Entry<?,?>[table.length]; for (int i = table.length ; i-- > 0 ; ) { t.table[i] = (table[i] != null) ? (Entry<?,?>) table[i].clone() : null; } t.keySet = null; t.entrySet = null; t.values = null; t.modCount = 0; return t; }
Calls super.clone()
/** Calls super.clone() */
final Hashtable<?,?> cloneHashtable() { try { return (Hashtable<?,?>)super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } }
Returns a string representation of this Hashtable object in the form of a set of entries, enclosed in braces and separated by the ASCII characters "" (comma and space). Each entry is rendered as the key, an equals sign =, and the associated element, where the toString method is used to convert the key and element to strings.
Returns: a string representation of this hashtable
/** * Returns a string representation of this {@code Hashtable} object * in the form of a set of entries, enclosed in braces and separated * by the ASCII characters "<code> ,&nbsp;</code>" (comma and space). Each * entry is rendered as the key, an equals sign {@code =}, and the * associated element, where the {@code toString} method is used to * convert the key and element to strings. * * @return a string representation of this hashtable */
public synchronized String toString() { int max = size() - 1; if (max == -1) return "{}"; StringBuilder sb = new StringBuilder(); Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append('{'); for (int i = 0; ; i++) { Map.Entry<K,V> e = it.next(); K key = e.getKey(); V value = e.getValue(); sb.append(key == this ? "(this Map)" : key.toString()); sb.append('='); sb.append(value == this ? "(this Map)" : value.toString()); if (i == max) return sb.append('}').toString(); sb.append(", "); } } private <T> Enumeration<T> getEnumeration(int type) { if (count == 0) { return Collections.emptyEnumeration(); } else { return new Enumerator<>(type, false); } } private <T> Iterator<T> getIterator(int type) { if (count == 0) { return Collections.emptyIterator(); } else { return new Enumerator<>(type, true); } } // Views
Each of these fields are initialized to contain an instance of the appropriate view the first time this view is requested. The views are stateless, so there's no reason to create more than one of each.
/** * Each of these fields are initialized to contain an instance of the * appropriate view the first time this view is requested. The views are * stateless, so there's no reason to create more than one of each. */
private transient volatile Set<K> keySet; private transient volatile Set<Map.Entry<K,V>> entrySet; private transient volatile Collection<V> values;
Returns a Set view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress (except through the iterator's own remove operation), the results of the iteration are undefined. The set supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove, Set.remove, removeAll, retainAll, and clear operations. It does not support the add or addAll operations.
Since:1.2
/** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or {@code addAll} * operations. * * @since 1.2 */
public Set<K> keySet() { if (keySet == null) keySet = Collections.synchronizedSet(new KeySet(), this); return keySet; } private class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return getIterator(KEYS); } public int size() { return count; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return Hashtable.this.remove(o) != null; } public void clear() { Hashtable.this.clear(); } }
Returns a Set view of the mappings contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and vice-versa. If the map is modified while an iteration over the set is in progress (except through the iterator's own remove operation, or through the setValue operation on a map entry returned by the iterator) the results of the iteration are undefined. The set supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove, Set.remove, removeAll, retainAll and clear operations. It does not support the add or addAll operations.
Since:1.2
/** * Returns a {@link Set} view of the mappings contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice-versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation, or through the * {@code setValue} operation on a map entry returned by the * iterator) the results of the iteration are undefined. The set * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Set.remove}, {@code removeAll}, {@code retainAll} and * {@code clear} operations. It does not support the * {@code add} or {@code addAll} operations. * * @since 1.2 */
public Set<Map.Entry<K,V>> entrySet() { if (entrySet==null) entrySet = Collections.synchronizedSet(new EntrySet(), this); return entrySet; } private class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return getIterator(ENTRIES); } public boolean add(Map.Entry<K,V> o) { return super.add(o); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> entry = (Map.Entry<?,?>)o; Object key = entry.getKey(); Entry<?,?>[] tab = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index]; e != null; e = e.next) if (e.hash==hash && e.equals(entry)) return true; return false; } public boolean remove(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> entry = (Map.Entry<?,?>) o; Object key = entry.getKey(); Entry<?,?>[] tab = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) { if (e.hash==hash && e.equals(entry)) { if (prev != null) prev.next = e.next; else tab[index] = e.next; e.value = null; // clear for gc. modCount++; count--; return true; } } return false; } public int size() { return count; } public void clear() { Hashtable.this.clear(); } }
Returns a Collection view of the values contained in this map. The collection is backed by the map, so changes to the map are reflected in the collection, and vice-versa. If the map is modified while an iteration over the collection is in progress (except through the iterator's own remove operation), the results of the iteration are undefined. The collection supports element removal, which removes the corresponding mapping from the map, via the Iterator.remove, Collection.remove, removeAll, retainAll and clear operations. It does not support the add or addAll operations.
Since:1.2
/** * Returns a {@link Collection} view of the values contained in this map. * The collection is backed by the map, so changes to the map are * reflected in the collection, and vice-versa. If the map is * modified while an iteration over the collection is in progress * (except through the iterator's own {@code remove} operation), * the results of the iteration are undefined. The collection * supports element removal, which removes the corresponding * mapping from the map, via the {@code Iterator.remove}, * {@code Collection.remove}, {@code removeAll}, * {@code retainAll} and {@code clear} operations. It does not * support the {@code add} or {@code addAll} operations. * * @since 1.2 */
public Collection<V> values() { if (values==null) values = Collections.synchronizedCollection(new ValueCollection(), this); return values; } private class ValueCollection extends AbstractCollection<V> { public Iterator<V> iterator() { return getIterator(VALUES); } public int size() { return count; } public boolean contains(Object o) { return containsValue(o); } public void clear() { Hashtable.this.clear(); } } // Comparison and hashing
Compares the specified Object with this Map for equality, as per the definition in the Map interface.
Params:
  • o – object to be compared for equality with this hashtable
See Also:
Returns:true if the specified Object is equal to this Map
Since:1.2
/** * Compares the specified Object with this Map for equality, * as per the definition in the Map interface. * * @param o object to be compared for equality with this hashtable * @return true if the specified Object is equal to this Map * @see Map#equals(Object) * @since 1.2 */
public synchronized boolean equals(Object o) { if (o == this) return true; if (!(o instanceof Map)) return false; Map<?,?> t = (Map<?,?>) o; if (t.size() != size()) return false; try { for (Map.Entry<K, V> e : entrySet()) { K key = e.getKey(); V value = e.getValue(); if (value == null) { if (!(t.get(key) == null && t.containsKey(key))) return false; } else { if (!value.equals(t.get(key))) return false; } } } catch (ClassCastException unused) { return false; } catch (NullPointerException unused) { return false; } return true; }
Returns the hash code value for this Map as per the definition in the Map interface.
See Also:
  • hashCode.hashCode()
Since:1.2
/** * Returns the hash code value for this Map as per the definition in the * Map interface. * * @see Map#hashCode() * @since 1.2 */
public synchronized int hashCode() { /* * This code detects the recursion caused by computing the hash code * of a self-referential hash table and prevents the stack overflow * that would otherwise result. This allows certain 1.1-era * applets with self-referential hash tables to work. This code * abuses the loadFactor field to do double-duty as a hashCode * in progress flag, so as not to worsen the space performance. * A negative load factor indicates that hash code computation is * in progress. */ int h = 0; if (count == 0 || loadFactor < 0) return h; // Returns zero loadFactor = -loadFactor; // Mark hashCode computation in progress Entry<?,?>[] tab = table; for (Entry<?,?> entry : tab) { while (entry != null) { h += entry.hashCode(); entry = entry.next; } } loadFactor = -loadFactor; // Mark hashCode computation complete return h; } @Override public synchronized V getOrDefault(Object key, V defaultValue) { V result = get(key); return (null == result) ? defaultValue : result; } @SuppressWarnings("unchecked") @Override public synchronized void forEach(BiConsumer<? super K, ? super V> action) { Objects.requireNonNull(action); // explicit check required in case // table is empty. final int expectedModCount = modCount; Entry<?, ?>[] tab = table; for (Entry<?, ?> entry : tab) { while (entry != null) { action.accept((K)entry.key, (V)entry.value); entry = entry.next; if (expectedModCount != modCount) { throw new ConcurrentModificationException(); } } } } @SuppressWarnings("unchecked") @Override public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { Objects.requireNonNull(function); // explicit check required in case // table is empty. final int expectedModCount = modCount; Entry<K, V>[] tab = (Entry<K, V>[])table; for (Entry<K, V> entry : tab) { while (entry != null) { entry.value = Objects.requireNonNull( function.apply(entry.key, entry.value)); entry = entry.next; if (expectedModCount != modCount) { throw new ConcurrentModificationException(); } } } } @Override public synchronized V putIfAbsent(K key, V value) { Objects.requireNonNull(value); // Makes sure the key is not already in the hashtable. Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> entry = (Entry<K,V>)tab[index]; for (; entry != null; entry = entry.next) { if ((entry.hash == hash) && entry.key.equals(key)) { V old = entry.value; if (old == null) { entry.value = value; } return old; } } addEntry(hash, key, value, index); return null; } @Override public synchronized boolean remove(Object key, Object value) { Objects.requireNonNull(value); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) { if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } e.value = null; // clear for gc modCount++; count--; return true; } } return false; } @Override public synchronized boolean replace(K key, V oldValue, V newValue) { Objects.requireNonNull(oldValue); Objects.requireNonNull(newValue); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (; e != null; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { if (e.value.equals(oldValue)) { e.value = newValue; return true; } else { return false; } } } return false; } @Override public synchronized V replace(K key, V value) { Objects.requireNonNull(value); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (; e != null; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { V oldValue = e.value; e.value = value; return oldValue; } } return null; }
{@inheritDoc}

This method will, on a best-effort basis, throw a ConcurrentModificationException if the mapping function modified this map during computation.

Throws:
/** * {@inheritDoc} * * <p>This method will, on a best-effort basis, throw a * {@link java.util.ConcurrentModificationException} if the mapping * function modified this map during computation. * * @throws ConcurrentModificationException if it is detected that the * mapping function modified this map */
@Override public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { Objects.requireNonNull(mappingFunction); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (; e != null; e = e.next) { if (e.hash == hash && e.key.equals(key)) { // Hashtable not accept null value return e.value; } } int mc = modCount; V newValue = mappingFunction.apply(key); if (mc != modCount) { throw new ConcurrentModificationException(); } if (newValue != null) { addEntry(hash, key, newValue, index); } return newValue; }
{@inheritDoc}

This method will, on a best-effort basis, throw a ConcurrentModificationException if the remapping function modified this map during computation.

Throws:
/** * {@inheritDoc} * * <p>This method will, on a best-effort basis, throw a * {@link java.util.ConcurrentModificationException} if the remapping * function modified this map during computation. * * @throws ConcurrentModificationException if it is detected that the * remapping function modified this map */
@Override public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { if (e.hash == hash && e.key.equals(key)) { int mc = modCount; V newValue = remappingFunction.apply(key, e.value); if (mc != modCount) { throw new ConcurrentModificationException(); } if (newValue == null) { if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } modCount = mc + 1; count--; } else { e.value = newValue; } return newValue; } } return null; }
{@inheritDoc}

This method will, on a best-effort basis, throw a ConcurrentModificationException if the remapping function modified this map during computation.

Throws:
/** * {@inheritDoc} * * <p>This method will, on a best-effort basis, throw a * {@link java.util.ConcurrentModificationException} if the remapping * function modified this map during computation. * * @throws ConcurrentModificationException if it is detected that the * remapping function modified this map */
@Override public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { if (e.hash == hash && Objects.equals(e.key, key)) { int mc = modCount; V newValue = remappingFunction.apply(key, e.value); if (mc != modCount) { throw new ConcurrentModificationException(); } if (newValue == null) { if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } modCount = mc + 1; count--; } else { e.value = newValue; } return newValue; } } int mc = modCount; V newValue = remappingFunction.apply(key, null); if (mc != modCount) { throw new ConcurrentModificationException(); } if (newValue != null) { addEntry(hash, key, newValue, index); } return newValue; }
{@inheritDoc}

This method will, on a best-effort basis, throw a ConcurrentModificationException if the remapping function modified this map during computation.

Throws:
/** * {@inheritDoc} * * <p>This method will, on a best-effort basis, throw a * {@link java.util.ConcurrentModificationException} if the remapping * function modified this map during computation. * * @throws ConcurrentModificationException if it is detected that the * remapping function modified this map */
@Override public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) { Objects.requireNonNull(remappingFunction); Entry<?,?> tab[] = table; int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for (Entry<K,V> prev = null; e != null; prev = e, e = e.next) { if (e.hash == hash && e.key.equals(key)) { int mc = modCount; V newValue = remappingFunction.apply(e.value, value); if (mc != modCount) { throw new ConcurrentModificationException(); } if (newValue == null) { if (prev != null) { prev.next = e.next; } else { tab[index] = e.next; } modCount = mc + 1; count--; } else { e.value = newValue; } return newValue; } } if (value != null) { addEntry(hash, key, value, index); } return value; }
Save the state of the Hashtable to a stream (i.e., serialize it).
@serialDataThe capacity of the Hashtable (the length of the bucket array) is emitted (int), followed by the size of the Hashtable (the number of key-value mappings), followed by the key (Object) and value (Object) for each key-value mapping represented by the Hashtable The key-value mappings are emitted in no particular order.
/** * Save the state of the Hashtable to a stream (i.e., serialize it). * * @serialData The <i>capacity</i> of the Hashtable (the length of the * bucket array) is emitted (int), followed by the * <i>size</i> of the Hashtable (the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping represented by the Hashtable * The key-value mappings are emitted in no particular order. */
private void writeObject(java.io.ObjectOutputStream s) throws IOException { writeHashtable(s); }
Perform serialization of the Hashtable to an ObjectOutputStream. The Properties class overrides this method.
/** * Perform serialization of the Hashtable to an ObjectOutputStream. * The Properties class overrides this method. */
void writeHashtable(java.io.ObjectOutputStream s) throws IOException { Entry<Object, Object> entryStack = null; synchronized (this) { // Write out the threshold and loadFactor s.defaultWriteObject(); // Write out the length and count of elements s.writeInt(table.length); s.writeInt(count); // Stack copies of the entries in the table for (Entry<?, ?> entry : table) { while (entry != null) { entryStack = new Entry<>(0, entry.key, entry.value, entryStack); entry = entry.next; } } } // Write out the key/value objects from the stacked entries while (entryStack != null) { s.writeObject(entryStack.key); s.writeObject(entryStack.value); entryStack = entryStack.next; } }
Called by Properties to write out a simulated threshold and loadfactor.
/** * Called by Properties to write out a simulated threshold and loadfactor. */
final void defaultWriteHashtable(java.io.ObjectOutputStream s, int length, float loadFactor) throws IOException { this.threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1); this.loadFactor = loadFactor; s.defaultWriteObject(); }
Reconstitute the Hashtable from a stream (i.e., deserialize it).
/** * Reconstitute the Hashtable from a stream (i.e., deserialize it). */
private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { readHashtable(s); }
Perform deserialization of the Hashtable from an ObjectInputStream. The Properties class overrides this method.
/** * Perform deserialization of the Hashtable from an ObjectInputStream. * The Properties class overrides this method. */
void readHashtable(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold and loadFactor s.defaultReadObject(); // Validate loadFactor (ignore threshold - it will be re-computed) if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new StreamCorruptedException("Illegal Load: " + loadFactor); // Read the original length of the array and number of elements int origlength = s.readInt(); int elements = s.readInt(); // Validate # of elements if (elements < 0) throw new StreamCorruptedException("Illegal # of Elements: " + elements); // Clamp original length to be more than elements / loadFactor // (this is the invariant enforced with auto-growth) origlength = Math.max(origlength, (int)(elements / loadFactor) + 1); // Compute new length with a bit of room 5% + 3 to grow but // no larger than the clamped original length. Make the length // odd if it's large enough, this helps distribute the entries. // Guard against the length ending up zero, that's not valid. int length = (int)((elements + elements / 20) / loadFactor) + 3; if (length > elements && (length & 1) == 0) length--; length = Math.min(length, origlength); if (length < 0) { // overflow length = origlength; } // Check Map.Entry[].class since it's the nearest public type to // what we're actually creating. SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Map.Entry[].class, length); table = new Entry<?,?>[length]; threshold = (int)Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1); count = 0; // Read the number of elements and then all the key/value objects for (; elements > 0; elements--) { @SuppressWarnings("unchecked") K key = (K)s.readObject(); @SuppressWarnings("unchecked") V value = (V)s.readObject(); // sync is eliminated for performance reconstitutionPut(table, key, value); } }
The put method used by readObject. This is provided because put is overridable and should not be called in readObject since the subclass will not yet be initialized.

This differs from the regular put method in several ways. No checking for rehashing is necessary since the number of elements initially in the table is known. The modCount is not incremented and there's no synchronization because we are creating a new instance. Also, no return value is needed.

/** * The put method used by readObject. This is provided because put * is overridable and should not be called in readObject since the * subclass will not yet be initialized. * * <p>This differs from the regular put method in several ways. No * checking for rehashing is necessary since the number of elements * initially in the table is known. The modCount is not incremented and * there's no synchronization because we are creating a new instance. * Also, no return value is needed. */
private void reconstitutionPut(Entry<?,?>[] tab, K key, V value) throws StreamCorruptedException { if (value == null) { throw new java.io.StreamCorruptedException(); } // Makes sure the key is not already in the hashtable. // This should not happen in deserialized version. int hash = key.hashCode(); int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?,?> e = tab[index] ; e != null ; e = e.next) { if ((e.hash == hash) && e.key.equals(key)) { throw new java.io.StreamCorruptedException(); } } // Creates the new entry. @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; tab[index] = new Entry<>(hash, key, value, e); count++; }
Hashtable bucket collision list entry
/** * Hashtable bucket collision list entry */
private static class Entry<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Entry<K,V> next; protected Entry(int hash, K key, V value, Entry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } @SuppressWarnings("unchecked") protected Object clone() { return new Entry<>(hash, key, value, (next==null ? null : (Entry<K,V>) next.clone())); } // Map.Entry Ops public K getKey() { return key; } public V getValue() { return value; } public V setValue(V value) { if (value == null) throw new NullPointerException(); V oldValue = this.value; this.value = value; return oldValue; } public boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<?,?> e = (Map.Entry<?,?>)o; return (key==null ? e.getKey()==null : key.equals(e.getKey())) && (value==null ? e.getValue()==null : value.equals(e.getValue())); } public int hashCode() { return hash ^ Objects.hashCode(value); } public String toString() { return key.toString()+"="+value.toString(); } } // Types of Enumerations/Iterations private static final int KEYS = 0; private static final int VALUES = 1; private static final int ENTRIES = 2;
A hashtable enumerator class. This class implements both the Enumeration and Iterator interfaces, but individual instances can be created with the Iterator methods disabled. This is necessary to avoid unintentionally increasing the capabilities granted a user by passing an Enumeration.
/** * A hashtable enumerator class. This class implements both the * Enumeration and Iterator interfaces, but individual instances * can be created with the Iterator methods disabled. This is necessary * to avoid unintentionally increasing the capabilities granted a user * by passing an Enumeration. */
private class Enumerator<T> implements Enumeration<T>, Iterator<T> { final Entry<?,?>[] table = Hashtable.this.table; int index = table.length; Entry<?,?> entry; Entry<?,?> lastReturned; final int type;
Indicates whether this Enumerator is serving as an Iterator or an Enumeration. (true -> Iterator).
/** * Indicates whether this Enumerator is serving as an Iterator * or an Enumeration. (true -> Iterator). */
final boolean iterator;
The modCount value that the iterator believes that the backing Hashtable should have. If this expectation is violated, the iterator has detected concurrent modification.
/** * The modCount value that the iterator believes that the backing * Hashtable should have. If this expectation is violated, the iterator * has detected concurrent modification. */
protected int expectedModCount = Hashtable.this.modCount; Enumerator(int type, boolean iterator) { this.type = type; this.iterator = iterator; } public boolean hasMoreElements() { Entry<?,?> e = entry; int i = index; Entry<?,?>[] t = table; /* Use locals for faster loop iteration */ while (e == null && i > 0) { e = t[--i]; } entry = e; index = i; return e != null; } @SuppressWarnings("unchecked") public T nextElement() { Entry<?,?> et = entry; int i = index; Entry<?,?>[] t = table; /* Use locals for faster loop iteration */ while (et == null && i > 0) { et = t[--i]; } entry = et; index = i; if (et != null) { Entry<?,?> e = lastReturned = entry; entry = e.next; return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); } throw new NoSuchElementException("Hashtable Enumerator"); } // Iterator methods public boolean hasNext() { return hasMoreElements(); } public T next() { if (Hashtable.this.modCount != expectedModCount) throw new ConcurrentModificationException(); return nextElement(); } public void remove() { if (!iterator) throw new UnsupportedOperationException(); if (lastReturned == null) throw new IllegalStateException("Hashtable Enumerator"); if (modCount != expectedModCount) throw new ConcurrentModificationException(); synchronized(Hashtable.this) { Entry<?,?>[] tab = Hashtable.this.table; int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked") Entry<K,V> e = (Entry<K,V>)tab[index]; for(Entry<K,V> prev = null; e != null; prev = e, e = e.next) { if (e == lastReturned) { if (prev == null) tab[index] = e.next; else prev.next = e.next; expectedModCount++; lastReturned = null; Hashtable.this.modCount++; Hashtable.this.count--; return; } } throw new ConcurrentModificationException(); } } } }