/*
 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.security;

import java.util.*;

import java.security.Provider.Service;
import java.security.spec.KeySpec;
import java.security.spec.InvalidKeySpecException;

import sun.security.util.Debug;
import sun.security.jca.*;
import sun.security.jca.GetInstance.Instance;

Key factories are used to convert keys (opaque cryptographic keys of type Key) into key specifications (transparent representations of the underlying key material), and vice versa.

Key factories are bi-directional. That is, they allow you to build an opaque key object from a given key specification (key material), or to retrieve the underlying key material of a key object in a suitable format.

Multiple compatible key specifications may exist for the same key. For example, a DSA public key may be specified using DSAPublicKeySpec or X509EncodedKeySpec. A key factory can be used to translate between compatible key specifications.

The following is an example of how to use a key factory in order to instantiate a DSA public key from its encoding. Assume Alice has received a digital signature from Bob. Bob also sent her his public key (in encoded format) to verify his signature. Alice then performs the following actions:

X509EncodedKeySpec bobPubKeySpec = new X509EncodedKeySpec(bobEncodedPubKey);
KeyFactory keyFactory = KeyFactory.getInstance("DSA");
PublicKey bobPubKey = keyFactory.generatePublic(bobPubKeySpec);
Signature sig = Signature.getInstance("DSA");
sig.initVerify(bobPubKey);
sig.update(data);
sig.verify(signature);

Every implementation of the Java platform is required to support the following standard KeyFactory algorithms:

  • DiffieHellman
  • DSA
  • RSA
These algorithms are described in the KeyFactory section of the Java Security Standard Algorithm Names Specification. Consult the release documentation for your implementation to see if any other algorithms are supported.
Author:Jan Luehe
See Also:
Since:1.2
/** * Key factories are used to convert <I>keys</I> (opaque * cryptographic keys of type {@code Key}) into <I>key specifications</I> * (transparent representations of the underlying key material), and vice * versa. * * <P> Key factories are bi-directional. That is, they allow you to build an * opaque key object from a given key specification (key material), or to * retrieve the underlying key material of a key object in a suitable format. * * <P> Multiple compatible key specifications may exist for the same key. * For example, a DSA public key may be specified using * {@code DSAPublicKeySpec} or * {@code X509EncodedKeySpec}. A key factory can be used to translate * between compatible key specifications. * * <P> The following is an example of how to use a key factory in order to * instantiate a DSA public key from its encoding. * Assume Alice has received a digital signature from Bob. * Bob also sent her his public key (in encoded format) to verify * his signature. Alice then performs the following actions: * * <pre> * X509EncodedKeySpec bobPubKeySpec = new X509EncodedKeySpec(bobEncodedPubKey); * KeyFactory keyFactory = KeyFactory.getInstance("DSA"); * PublicKey bobPubKey = keyFactory.generatePublic(bobPubKeySpec); * Signature sig = Signature.getInstance("DSA"); * sig.initVerify(bobPubKey); * sig.update(data); * sig.verify(signature); * </pre> * * <p> Every implementation of the Java platform is required to support the * following standard {@code KeyFactory} algorithms: * <ul> * <li>{@code DiffieHellman}</li> * <li>{@code DSA}</li> * <li>{@code RSA}</li> * </ul> * These algorithms are described in the <a href= * "{@docRoot}/../specs/security/standard-names.html#keyfactory-algorithms"> * KeyFactory section</a> of the * Java Security Standard Algorithm Names Specification. * Consult the release documentation for your implementation to see if any * other algorithms are supported. * * @author Jan Luehe * * @see Key * @see PublicKey * @see PrivateKey * @see java.security.spec.KeySpec * @see java.security.spec.DSAPublicKeySpec * @see java.security.spec.X509EncodedKeySpec * * @since 1.2 */
public class KeyFactory { private static final Debug debug = Debug.getInstance("jca", "KeyFactory"); // The algorithm associated with this key factory private final String algorithm; // The provider private Provider provider; // The provider implementation (delegate) private volatile KeyFactorySpi spi; // lock for mutex during provider selection private final Object lock = new Object(); // remaining services to try in provider selection // null once provider is selected private Iterator<Service> serviceIterator;
Creates a KeyFactory object.
Params:
  • keyFacSpi – the delegate
  • provider – the provider
  • algorithm – the name of the algorithm to associate with this KeyFactory
/** * Creates a KeyFactory object. * * @param keyFacSpi the delegate * @param provider the provider * @param algorithm the name of the algorithm * to associate with this {@code KeyFactory} */
protected KeyFactory(KeyFactorySpi keyFacSpi, Provider provider, String algorithm) { this.spi = keyFacSpi; this.provider = provider; this.algorithm = algorithm; } private KeyFactory(String algorithm) throws NoSuchAlgorithmException { this.algorithm = algorithm; List<Service> list = GetInstance.getServices("KeyFactory", algorithm); serviceIterator = list.iterator(); // fetch and instantiate initial spi if (nextSpi(null) == null) { throw new NoSuchAlgorithmException (algorithm + " KeyFactory not available"); } }
Returns a KeyFactory object that converts public/private keys of the specified algorithm.

This method traverses the list of registered security Providers, starting with the most preferred Provider. A new KeyFactory object encapsulating the KeyFactorySpi implementation from the first Provider that supports the specified algorithm is returned.

Note that the list of registered providers may be retrieved via the Security.getProviders() method.

Params:
Throws:
See Also:
Implementation Note: The JDK Reference Implementation additionally uses the jdk.security.provider.preferred Security property to determine the preferred provider order for the specified algorithm. This may be different than the order of providers returned by Security.getProviders().
Returns:the new KeyFactory object
/** * Returns a KeyFactory object that converts * public/private keys of the specified algorithm. * * <p> This method traverses the list of registered security Providers, * starting with the most preferred Provider. * A new KeyFactory object encapsulating the * KeyFactorySpi implementation from the first * Provider that supports the specified algorithm is returned. * * <p> Note that the list of registered providers may be retrieved via * the {@link Security#getProviders() Security.getProviders()} method. * * @implNote * The JDK Reference Implementation additionally uses the * {@code jdk.security.provider.preferred} * {@link Security#getProperty(String) Security} property to determine * the preferred provider order for the specified algorithm. This * may be different than the order of providers returned by * {@link Security#getProviders() Security.getProviders()}. * * @param algorithm the name of the requested key algorithm. * See the KeyFactory section in the <a href= * "{@docRoot}/../specs/security/standard-names.html#keyfactory-algorithms"> * Java Security Standard Algorithm Names Specification</a> * for information about standard algorithm names. * * @return the new {@code KeyFactory} object * * @throws NoSuchAlgorithmException if no {@code Provider} supports a * {@code KeyFactorySpi} implementation for the * specified algorithm * * @throws NullPointerException if {@code algorithm} is {@code null} * * @see Provider */
public static KeyFactory getInstance(String algorithm) throws NoSuchAlgorithmException { Objects.requireNonNull(algorithm, "null algorithm name"); return new KeyFactory(algorithm); }
Returns a KeyFactory object that converts public/private keys of the specified algorithm.

A new KeyFactory object encapsulating the KeyFactorySpi implementation from the specified provider is returned. The specified provider must be registered in the security provider list.

Note that the list of registered providers may be retrieved via the Security.getProviders() method.

Params:
Throws:
See Also:
Returns:the new KeyFactory object
/** * Returns a KeyFactory object that converts * public/private keys of the specified algorithm. * * <p> A new KeyFactory object encapsulating the * KeyFactorySpi implementation from the specified provider * is returned. The specified provider must be registered * in the security provider list. * * <p> Note that the list of registered providers may be retrieved via * the {@link Security#getProviders() Security.getProviders()} method. * * @param algorithm the name of the requested key algorithm. * See the KeyFactory section in the <a href= * "{@docRoot}/../specs/security/standard-names.html#keyfactory-algorithms"> * Java Security Standard Algorithm Names Specification</a> * for information about standard algorithm names. * * @param provider the name of the provider. * * @return the new {@code KeyFactory} object * * @throws IllegalArgumentException if the provider name is {@code null} * or empty * * @throws NoSuchAlgorithmException if a {@code KeyFactorySpi} * implementation for the specified algorithm is not * available from the specified provider * * @throws NoSuchProviderException if the specified provider is not * registered in the security provider list * * @throws NullPointerException if {@code algorithm} is {@code null} * * @see Provider */
public static KeyFactory getInstance(String algorithm, String provider) throws NoSuchAlgorithmException, NoSuchProviderException { Objects.requireNonNull(algorithm, "null algorithm name"); Instance instance = GetInstance.getInstance("KeyFactory", KeyFactorySpi.class, algorithm, provider); return new KeyFactory((KeyFactorySpi)instance.impl, instance.provider, algorithm); }
Returns a KeyFactory object that converts public/private keys of the specified algorithm.

A new KeyFactory object encapsulating the KeyFactorySpi implementation from the specified Provider object is returned. Note that the specified Provider object does not have to be registered in the provider list.

Params:
Throws:
See Also:
Returns:the new KeyFactory object
Since:1.4
/** * Returns a KeyFactory object that converts * public/private keys of the specified algorithm. * * <p> A new KeyFactory object encapsulating the * KeyFactorySpi implementation from the specified Provider * object is returned. Note that the specified Provider object * does not have to be registered in the provider list. * * @param algorithm the name of the requested key algorithm. * See the KeyFactory section in the <a href= * "{@docRoot}/../specs/security/standard-names.html#keyfactory-algorithms"> * Java Security Standard Algorithm Names Specification</a> * for information about standard algorithm names. * * @param provider the provider. * * @return the new {@code KeyFactory} object * * @throws IllegalArgumentException if the specified provider is * {@code null} * * @throws NoSuchAlgorithmException if a {@code KeyFactorySpi} * implementation for the specified algorithm is not available * from the specified {@code Provider} object * * @throws NullPointerException if {@code algorithm} is {@code null} * * @see Provider * * @since 1.4 */
public static KeyFactory getInstance(String algorithm, Provider provider) throws NoSuchAlgorithmException { Objects.requireNonNull(algorithm, "null algorithm name"); Instance instance = GetInstance.getInstance("KeyFactory", KeyFactorySpi.class, algorithm, provider); return new KeyFactory((KeyFactorySpi)instance.impl, instance.provider, algorithm); }
Returns the provider of this key factory object.
Returns:the provider of this key factory object
/** * Returns the provider of this key factory object. * * @return the provider of this key factory object */
public final Provider getProvider() { synchronized (lock) { // disable further failover after this call serviceIterator = null; return provider; } }
Gets the name of the algorithm associated with this KeyFactory.
Returns:the name of the algorithm associated with this KeyFactory
/** * Gets the name of the algorithm * associated with this {@code KeyFactory}. * * @return the name of the algorithm associated with this * {@code KeyFactory} */
public final String getAlgorithm() { return this.algorithm; }
Update the active KeyFactorySpi of this class and return the next implementation for failover. If no more implemenations are available, this method returns null. However, the active spi of this class is never set to null.
/** * Update the active KeyFactorySpi of this class and return the next * implementation for failover. If no more implemenations are * available, this method returns null. However, the active spi of * this class is never set to null. */
private KeyFactorySpi nextSpi(KeyFactorySpi oldSpi) { synchronized (lock) { // somebody else did a failover concurrently // try that spi now if ((oldSpi != null) && (oldSpi != spi)) { return spi; } if (serviceIterator == null) { return null; } while (serviceIterator.hasNext()) { Service s = serviceIterator.next(); try { Object obj = s.newInstance(null); if (obj instanceof KeyFactorySpi == false) { continue; } KeyFactorySpi spi = (KeyFactorySpi)obj; provider = s.getProvider(); this.spi = spi; return spi; } catch (NoSuchAlgorithmException e) { // ignore } } serviceIterator = null; return null; } }
Generates a public key object from the provided key specification (key material).
Params:
  • keySpec – the specification (key material) of the public key.
Throws:
  • InvalidKeySpecException – if the given key specification is inappropriate for this key factory to produce a public key.
Returns:the public key.
/** * Generates a public key object from the provided key specification * (key material). * * @param keySpec the specification (key material) of the public key. * * @return the public key. * * @exception InvalidKeySpecException if the given key specification * is inappropriate for this key factory to produce a public key. */
public final PublicKey generatePublic(KeySpec keySpec) throws InvalidKeySpecException { if (serviceIterator == null) { return spi.engineGeneratePublic(keySpec); } Exception failure = null; KeyFactorySpi mySpi = spi; do { try { return mySpi.engineGeneratePublic(keySpec); } catch (Exception e) { if (failure == null) { failure = e; } mySpi = nextSpi(mySpi); } } while (mySpi != null); if (failure instanceof RuntimeException) { throw (RuntimeException)failure; } if (failure instanceof InvalidKeySpecException) { throw (InvalidKeySpecException)failure; } throw new InvalidKeySpecException ("Could not generate public key", failure); }
Generates a private key object from the provided key specification (key material).
Params:
  • keySpec – the specification (key material) of the private key.
Throws:
  • InvalidKeySpecException – if the given key specification is inappropriate for this key factory to produce a private key.
Returns:the private key.
/** * Generates a private key object from the provided key specification * (key material). * * @param keySpec the specification (key material) of the private key. * * @return the private key. * * @exception InvalidKeySpecException if the given key specification * is inappropriate for this key factory to produce a private key. */
public final PrivateKey generatePrivate(KeySpec keySpec) throws InvalidKeySpecException { if (serviceIterator == null) { return spi.engineGeneratePrivate(keySpec); } Exception failure = null; KeyFactorySpi mySpi = spi; do { try { return mySpi.engineGeneratePrivate(keySpec); } catch (Exception e) { if (failure == null) { failure = e; } mySpi = nextSpi(mySpi); } } while (mySpi != null); if (failure instanceof RuntimeException) { throw (RuntimeException)failure; } if (failure instanceof InvalidKeySpecException) { throw (InvalidKeySpecException)failure; } throw new InvalidKeySpecException ("Could not generate private key", failure); }
Returns a specification (key material) of the given key object. keySpec identifies the specification class in which the key material should be returned. It could, for example, be DSAPublicKeySpec.class, to indicate that the key material should be returned in an instance of the DSAPublicKeySpec class.
Params:
  • key – the key.
  • keySpec – the specification class in which the key material should be returned.
Type parameters:
  • <T> – the type of the key specification to be returned
Throws:
  • InvalidKeySpecException – if the requested key specification is inappropriate for the given key, or the given key cannot be processed (e.g., the given key has an unrecognized algorithm or format).
Returns:the underlying key specification (key material) in an instance of the requested specification class.
/** * Returns a specification (key material) of the given key object. * {@code keySpec} identifies the specification class in which * the key material should be returned. It could, for example, be * {@code DSAPublicKeySpec.class}, to indicate that the * key material should be returned in an instance of the * {@code DSAPublicKeySpec} class. * * @param <T> the type of the key specification to be returned * * @param key the key. * * @param keySpec the specification class in which * the key material should be returned. * * @return the underlying key specification (key material) in an instance * of the requested specification class. * * @exception InvalidKeySpecException if the requested key specification is * inappropriate for the given key, or the given key cannot be processed * (e.g., the given key has an unrecognized algorithm or format). */
public final <T extends KeySpec> T getKeySpec(Key key, Class<T> keySpec) throws InvalidKeySpecException { if (serviceIterator == null) { return spi.engineGetKeySpec(key, keySpec); } Exception failure = null; KeyFactorySpi mySpi = spi; do { try { return mySpi.engineGetKeySpec(key, keySpec); } catch (Exception e) { if (failure == null) { failure = e; } mySpi = nextSpi(mySpi); } } while (mySpi != null); if (failure instanceof RuntimeException) { throw (RuntimeException)failure; } if (failure instanceof InvalidKeySpecException) { throw (InvalidKeySpecException)failure; } throw new InvalidKeySpecException ("Could not get key spec", failure); }
Translates a key object, whose provider may be unknown or potentially untrusted, into a corresponding key object of this key factory.
Params:
  • key – the key whose provider is unknown or untrusted.
Throws:
Returns:the translated key.
/** * Translates a key object, whose provider may be unknown or potentially * untrusted, into a corresponding key object of this key factory. * * @param key the key whose provider is unknown or untrusted. * * @return the translated key. * * @exception InvalidKeyException if the given key cannot be processed * by this key factory. */
public final Key translateKey(Key key) throws InvalidKeyException { if (serviceIterator == null) { return spi.engineTranslateKey(key); } Exception failure = null; KeyFactorySpi mySpi = spi; do { try { return mySpi.engineTranslateKey(key); } catch (Exception e) { if (failure == null) { failure = e; } mySpi = nextSpi(mySpi); } } while (mySpi != null); if (failure instanceof RuntimeException) { throw (RuntimeException)failure; } if (failure instanceof InvalidKeyException) { throw (InvalidKeyException)failure; } throw new InvalidKeyException ("Could not translate key", failure); } }