/*
 * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

import sun.invoke.util.BytecodeDescriptor;
import sun.invoke.util.VerifyAccess;

import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Member;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.Objects;

import static java.lang.invoke.MethodHandleNatives.Constants.*;
import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
import static java.lang.invoke.MethodHandleStatics.newInternalError;

A MemberName is a compact symbolic datum which fully characterizes a method or field reference. A member name refers to a field, method, constructor, or member type. Every member name has a simple name (a string) and a type (either a Class or MethodType). A member name may also have a non-null declaring class, or it may be simply a naked name/type pair. A member name may also have non-zero modifier flags. Finally, a member name may be either resolved or unresolved. If it is resolved, the existence of the named member has been determined by the JVM.

Whether resolved or not, a member name provides no access rights or invocation capability to its possessor. It is merely a compact representation of all symbolic information necessary to link to and properly use the named member.

When resolved, a member name's internal implementation may include references to JVM metadata. This representation is stateless and only descriptive. It provides no private information and no capability to use the member.

By contrast, a Method contains fuller information about the internals of a method (except its bytecodes) and also allows invocation. A MemberName is much lighter than a Method, since it contains about 7 fields to the 16 of Method (plus its sub-arrays), and those seven fields omit much of the information in Method.

Author:jrose
/** * A {@code MemberName} is a compact symbolic datum which fully characterizes * a method or field reference. * A member name refers to a field, method, constructor, or member type. * Every member name has a simple name (a string) and a type (either a Class or MethodType). * A member name may also have a non-null declaring class, or it may be simply * a naked name/type pair. * A member name may also have non-zero modifier flags. * Finally, a member name may be either resolved or unresolved. * If it is resolved, the existence of the named member has been determined by the JVM. * <p> * Whether resolved or not, a member name provides no access rights or * invocation capability to its possessor. It is merely a compact * representation of all symbolic information necessary to link to * and properly use the named member. * <p> * When resolved, a member name's internal implementation may include references to JVM metadata. * This representation is stateless and only descriptive. * It provides no private information and no capability to use the member. * <p> * By contrast, a {@linkplain java.lang.reflect.Method} contains fuller information * about the internals of a method (except its bytecodes) and also * allows invocation. A MemberName is much lighter than a Method, * since it contains about 7 fields to the 16 of Method (plus its sub-arrays), * and those seven fields omit much of the information in Method. * @author jrose */
/*non-public*/ final class ResolvedMethodName { //@Injected JVM_Method* vmtarget; //@Injected Class<?> vmholder; }; /*non-public*/ final class MemberName implements Member, Cloneable { private Class<?> clazz; // class in which the member is defined private String name; // may be null if not yet materialized private Object type; // may be null if not yet materialized private int flags; // modifier bits; see reflect.Modifier private ResolvedMethodName method; // cached resolved method information //@Injected intptr_t vmindex; // vtable index or offset of resolved member Object resolution; // if null, this guy is resolved
Return the declaring class of this member. In the case of a bare name and type, the declaring class will be null.
/** Return the declaring class of this member. * In the case of a bare name and type, the declaring class will be null. */
public Class<?> getDeclaringClass() { return clazz; }
Utility method producing the class loader of the declaring class.
/** Utility method producing the class loader of the declaring class. */
public ClassLoader getClassLoader() { return clazz.getClassLoader(); }
Return the simple name of this member. For a type, it is the same as Class.getSimpleName. For a method or field, it is the simple name of the member. For a constructor, it is always "<init>".
/** Return the simple name of this member. * For a type, it is the same as {@link Class#getSimpleName}. * For a method or field, it is the simple name of the member. * For a constructor, it is always {@code "<init>"}. */
public String getName() { if (name == null) { expandFromVM(); if (name == null) { return null; } } return name; } public MethodType getMethodOrFieldType() { if (isInvocable()) return getMethodType(); if (isGetter()) return MethodType.methodType(getFieldType()); if (isSetter()) return MethodType.methodType(void.class, getFieldType()); throw new InternalError("not a method or field: "+this); }
Return the declared type of this member, which must be a method or constructor.
/** Return the declared type of this member, which * must be a method or constructor. */
public MethodType getMethodType() { if (type == null) { expandFromVM(); if (type == null) { return null; } } if (!isInvocable()) { throw newIllegalArgumentException("not invocable, no method type"); } { // Get a snapshot of type which doesn't get changed by racing threads. final Object type = this.type; if (type instanceof MethodType) { return (MethodType) type; } } // type is not a MethodType yet. Convert it thread-safely. synchronized (this) { if (type instanceof String) { String sig = (String) type; MethodType res = MethodType.fromDescriptor(sig, getClassLoader()); type = res; } else if (type instanceof Object[]) { Object[] typeInfo = (Object[]) type; Class<?>[] ptypes = (Class<?>[]) typeInfo[1]; Class<?> rtype = (Class<?>) typeInfo[0]; MethodType res = MethodType.makeImpl(rtype, ptypes, true); type = res; } // Make sure type is a MethodType for racing threads. assert type instanceof MethodType : "bad method type " + type; } return (MethodType) type; }
Return the descriptor of this member, which must be a method or constructor.
/** Return the descriptor of this member, which * must be a method or constructor. */
String getMethodDescriptor() { if (type == null) { expandFromVM(); if (type == null) { return null; } } if (!isInvocable()) { throw newIllegalArgumentException("not invocable, no method type"); } // Get a snapshot of type which doesn't get changed by racing threads. final Object type = this.type; if (type instanceof String) { return (String) type; } else { return getMethodType().toMethodDescriptorString(); } }
Return the actual type under which this method or constructor must be invoked. For non-static methods or constructors, this is the type with a leading parameter, a reference to declaring class. For static methods, it is the same as the declared type.
/** Return the actual type under which this method or constructor must be invoked. * For non-static methods or constructors, this is the type with a leading parameter, * a reference to declaring class. For static methods, it is the same as the declared type. */
public MethodType getInvocationType() { MethodType itype = getMethodOrFieldType(); if (isConstructor() && getReferenceKind() == REF_newInvokeSpecial) return itype.changeReturnType(clazz); if (!isStatic()) return itype.insertParameterTypes(0, clazz); return itype; }
Utility method producing the parameter types of the method type.
/** Utility method producing the parameter types of the method type. */
public Class<?>[] getParameterTypes() { return getMethodType().parameterArray(); }
Utility method producing the return type of the method type.
/** Utility method producing the return type of the method type. */
public Class<?> getReturnType() { return getMethodType().returnType(); }
Return the declared type of this member, which must be a field or type. If it is a type member, that type itself is returned.
/** Return the declared type of this member, which * must be a field or type. * If it is a type member, that type itself is returned. */
public Class<?> getFieldType() { if (type == null) { expandFromVM(); if (type == null) { return null; } } if (isInvocable()) { throw newIllegalArgumentException("not a field or nested class, no simple type"); } { // Get a snapshot of type which doesn't get changed by racing threads. final Object type = this.type; if (type instanceof Class<?>) { return (Class<?>) type; } } // type is not a Class yet. Convert it thread-safely. synchronized (this) { if (type instanceof String) { String sig = (String) type; MethodType mtype = MethodType.fromDescriptor("()"+sig, getClassLoader()); Class<?> res = mtype.returnType(); type = res; } // Make sure type is a Class for racing threads. assert type instanceof Class<?> : "bad field type " + type; } return (Class<?>) type; }
Utility method to produce either the method type or field type of this member.
/** Utility method to produce either the method type or field type of this member. */
public Object getType() { return (isInvocable() ? getMethodType() : getFieldType()); }
Utility method to produce the signature of this member, used within the class file format to describe its type.
/** Utility method to produce the signature of this member, * used within the class file format to describe its type. */
public String getSignature() { if (type == null) { expandFromVM(); if (type == null) { return null; } } if (isInvocable()) return BytecodeDescriptor.unparse(getMethodType()); else return BytecodeDescriptor.unparse(getFieldType()); }
Return the modifier flags of this member. @see java.lang.reflect.Modifier
/** Return the modifier flags of this member. * @see java.lang.reflect.Modifier */
public int getModifiers() { return (flags & RECOGNIZED_MODIFIERS); }
Return the reference kind of this member, or zero if none.
/** Return the reference kind of this member, or zero if none. */
public byte getReferenceKind() { return (byte) ((flags >>> MN_REFERENCE_KIND_SHIFT) & MN_REFERENCE_KIND_MASK); } private boolean referenceKindIsConsistent() { byte refKind = getReferenceKind(); if (refKind == REF_NONE) return isType(); if (isField()) { assert(staticIsConsistent()); assert(MethodHandleNatives.refKindIsField(refKind)); } else if (isConstructor()) { assert(refKind == REF_newInvokeSpecial || refKind == REF_invokeSpecial); } else if (isMethod()) { assert(staticIsConsistent()); assert(MethodHandleNatives.refKindIsMethod(refKind)); if (clazz.isInterface()) assert(refKind == REF_invokeInterface || refKind == REF_invokeStatic || refKind == REF_invokeSpecial || refKind == REF_invokeVirtual && isObjectPublicMethod()); } else { assert(false); } return true; } private boolean isObjectPublicMethod() { if (clazz == Object.class) return true; MethodType mtype = getMethodType(); if (name.equals("toString") && mtype.returnType() == String.class && mtype.parameterCount() == 0) return true; if (name.equals("hashCode") && mtype.returnType() == int.class && mtype.parameterCount() == 0) return true; if (name.equals("equals") && mtype.returnType() == boolean.class && mtype.parameterCount() == 1 && mtype.parameterType(0) == Object.class) return true; return false; } /*non-public*/ boolean referenceKindIsConsistentWith(int originalRefKind) { int refKind = getReferenceKind(); if (refKind == originalRefKind) return true; switch (originalRefKind) { case REF_invokeInterface: // Looking up an interface method, can get (e.g.) Object.hashCode assert(refKind == REF_invokeVirtual || refKind == REF_invokeSpecial) : this; return true; case REF_invokeVirtual: case REF_newInvokeSpecial: // Looked up a virtual, can get (e.g.) final String.hashCode. assert(refKind == REF_invokeSpecial) : this; return true; } assert(false) : this+" != "+MethodHandleNatives.refKindName((byte)originalRefKind); return true; } private boolean staticIsConsistent() { byte refKind = getReferenceKind(); return MethodHandleNatives.refKindIsStatic(refKind) == isStatic() || getModifiers() == 0; } private boolean vminfoIsConsistent() { byte refKind = getReferenceKind(); assert(isResolved()); // else don't call Object vminfo = MethodHandleNatives.getMemberVMInfo(this); assert(vminfo instanceof Object[]); long vmindex = (Long) ((Object[])vminfo)[0]; Object vmtarget = ((Object[])vminfo)[1]; if (MethodHandleNatives.refKindIsField(refKind)) { assert(vmindex >= 0) : vmindex + ":" + this; assert(vmtarget instanceof Class); } else { if (MethodHandleNatives.refKindDoesDispatch(refKind)) assert(vmindex >= 0) : vmindex + ":" + this; else assert(vmindex < 0) : vmindex; assert(vmtarget instanceof MemberName) : vmtarget + " in " + this; } return true; } private MemberName changeReferenceKind(byte refKind, byte oldKind) { assert(getReferenceKind() == oldKind); assert(MethodHandleNatives.refKindIsValid(refKind)); flags += (((int)refKind - oldKind) << MN_REFERENCE_KIND_SHIFT); return this; } private boolean testFlags(int mask, int value) { return (flags & mask) == value; } private boolean testAllFlags(int mask) { return testFlags(mask, mask); } private boolean testAnyFlags(int mask) { return !testFlags(mask, 0); }
Utility method to query if this member is a method handle invocation (invoke or invokeExact).
/** Utility method to query if this member is a method handle invocation (invoke or invokeExact). */
public boolean isMethodHandleInvoke() { final int bits = MH_INVOKE_MODS &~ Modifier.PUBLIC; final int negs = Modifier.STATIC; if (testFlags(bits | negs, bits) && clazz == MethodHandle.class) { return isMethodHandleInvokeName(name); } return false; } public static boolean isMethodHandleInvokeName(String name) { switch (name) { case "invoke": case "invokeExact": return true; default: return false; } } public boolean isVarHandleMethodInvoke() { final int bits = MH_INVOKE_MODS &~ Modifier.PUBLIC; final int negs = Modifier.STATIC; if (testFlags(bits | negs, bits) && clazz == VarHandle.class) { return isVarHandleMethodInvokeName(name); } return false; } public static boolean isVarHandleMethodInvokeName(String name) { try { VarHandle.AccessMode.valueFromMethodName(name); return true; } catch (IllegalArgumentException e) { return false; } } private static final int MH_INVOKE_MODS = Modifier.NATIVE | Modifier.FINAL | Modifier.PUBLIC;
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isStatic() { return Modifier.isStatic(flags); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isPublic() { return Modifier.isPublic(flags); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isPrivate() { return Modifier.isPrivate(flags); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isProtected() { return Modifier.isProtected(flags); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isFinal() { return Modifier.isFinal(flags); }
Utility method to query whether this member or its defining class is final.
/** Utility method to query whether this member or its defining class is final. */
public boolean canBeStaticallyBound() { return Modifier.isFinal(flags | clazz.getModifiers()); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isVolatile() { return Modifier.isVolatile(flags); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isAbstract() { return Modifier.isAbstract(flags); }
Utility method to query the modifier flags of this member.
/** Utility method to query the modifier flags of this member. */
public boolean isNative() { return Modifier.isNative(flags); } // let the rest (native, volatile, transient, etc.) be tested via Modifier.isFoo // unofficial modifier flags, used by HotSpot: static final int BRIDGE = 0x00000040; static final int VARARGS = 0x00000080; static final int SYNTHETIC = 0x00001000; static final int ANNOTATION= 0x00002000; static final int ENUM = 0x00004000;
Utility method to query the modifier flags of this member; returns false if the member is not a method.
/** Utility method to query the modifier flags of this member; returns false if the member is not a method. */
public boolean isBridge() { return testAllFlags(IS_METHOD | BRIDGE); }
Utility method to query the modifier flags of this member; returns false if the member is not a method.
/** Utility method to query the modifier flags of this member; returns false if the member is not a method. */
public boolean isVarargs() { return testAllFlags(VARARGS) && isInvocable(); }
Utility method to query the modifier flags of this member; returns false if the member is not a method.
/** Utility method to query the modifier flags of this member; returns false if the member is not a method. */
public boolean isSynthetic() { return testAllFlags(SYNTHETIC); } static final String CONSTRUCTOR_NAME = "<init>"; // the ever-popular // modifiers exported by the JVM: static final int RECOGNIZED_MODIFIERS = 0xFFFF; // private flags, not part of RECOGNIZED_MODIFIERS: static final int IS_METHOD = MN_IS_METHOD, // method (not constructor) IS_CONSTRUCTOR = MN_IS_CONSTRUCTOR, // constructor IS_FIELD = MN_IS_FIELD, // field IS_TYPE = MN_IS_TYPE, // nested type CALLER_SENSITIVE = MN_CALLER_SENSITIVE; // @CallerSensitive annotation detected static final int ALL_ACCESS = Modifier.PUBLIC | Modifier.PRIVATE | Modifier.PROTECTED; static final int ALL_KINDS = IS_METHOD | IS_CONSTRUCTOR | IS_FIELD | IS_TYPE; static final int IS_INVOCABLE = IS_METHOD | IS_CONSTRUCTOR; static final int IS_FIELD_OR_METHOD = IS_METHOD | IS_FIELD; static final int SEARCH_ALL_SUPERS = MN_SEARCH_SUPERCLASSES | MN_SEARCH_INTERFACES;
Utility method to query whether this member is a method or constructor.
/** Utility method to query whether this member is a method or constructor. */
public boolean isInvocable() { return testAnyFlags(IS_INVOCABLE); }
Utility method to query whether this member is a method, constructor, or field.
/** Utility method to query whether this member is a method, constructor, or field. */
public boolean isFieldOrMethod() { return testAnyFlags(IS_FIELD_OR_METHOD); }
Query whether this member is a method.
/** Query whether this member is a method. */
public boolean isMethod() { return testAllFlags(IS_METHOD); }
Query whether this member is a constructor.
/** Query whether this member is a constructor. */
public boolean isConstructor() { return testAllFlags(IS_CONSTRUCTOR); }
Query whether this member is a field.
/** Query whether this member is a field. */
public boolean isField() { return testAllFlags(IS_FIELD); }
Query whether this member is a type.
/** Query whether this member is a type. */
public boolean isType() { return testAllFlags(IS_TYPE); }
Utility method to query whether this member is neither public, private, nor protected.
/** Utility method to query whether this member is neither public, private, nor protected. */
public boolean isPackage() { return !testAnyFlags(ALL_ACCESS); }
Query whether this member has a CallerSensitive annotation.
/** Query whether this member has a CallerSensitive annotation. */
public boolean isCallerSensitive() { return testAllFlags(CALLER_SENSITIVE); }
Utility method to query whether this member is accessible from a given lookup class.
/** Utility method to query whether this member is accessible from a given lookup class. */
public boolean isAccessibleFrom(Class<?> lookupClass) { int mode = (ALL_ACCESS|MethodHandles.Lookup.PACKAGE|MethodHandles.Lookup.MODULE); return VerifyAccess.isMemberAccessible(this.getDeclaringClass(), this.getDeclaringClass(), flags, lookupClass, mode); }
Check if MemberName is a call to a method named name in class declaredClass.
/** * Check if MemberName is a call to a method named {@code name} in class {@code declaredClass}. */
public boolean refersTo(Class<?> declc, String n) { return clazz == declc && getName().equals(n); }
Initialize a query. It is not resolved.
/** Initialize a query. It is not resolved. */
private void init(Class<?> defClass, String name, Object type, int flags) { // defining class is allowed to be null (for a naked name/type pair) //name.toString(); // null check //type.equals(type); // null check // fill in fields: this.clazz = defClass; this.name = name; this.type = type; this.flags = flags; assert(testAnyFlags(ALL_KINDS)); assert(this.resolution == null); // nobody should have touched this yet //assert(referenceKindIsConsistent()); // do this after resolution }
Calls down to the VM to fill in the fields. This method is synchronized to avoid racing calls.
/** * Calls down to the VM to fill in the fields. This method is * synchronized to avoid racing calls. */
private void expandFromVM() { if (type != null) { return; } if (!isResolved()) { return; } MethodHandleNatives.expand(this); } // Capturing information from the Core Reflection API: private static int flagsMods(int flags, int mods, byte refKind) { assert((flags & RECOGNIZED_MODIFIERS) == 0); assert((mods & ~RECOGNIZED_MODIFIERS) == 0); assert((refKind & ~MN_REFERENCE_KIND_MASK) == 0); return flags | mods | (refKind << MN_REFERENCE_KIND_SHIFT); }
Create a name for the given reflected method. The resulting name will be in a resolved state.
/** Create a name for the given reflected method. The resulting name will be in a resolved state. */
public MemberName(Method m) { this(m, false); } @SuppressWarnings("LeakingThisInConstructor") public MemberName(Method m, boolean wantSpecial) { Objects.requireNonNull(m); // fill in vmtarget, vmindex while we have m in hand: MethodHandleNatives.init(this, m); if (clazz == null) { // MHN.init failed if (m.getDeclaringClass() == MethodHandle.class && isMethodHandleInvokeName(m.getName())) { // The JVM did not reify this signature-polymorphic instance. // Need a special case here. // See comments on MethodHandleNatives.linkMethod. MethodType type = MethodType.methodType(m.getReturnType(), m.getParameterTypes()); int flags = flagsMods(IS_METHOD, m.getModifiers(), REF_invokeVirtual); init(MethodHandle.class, m.getName(), type, flags); if (isMethodHandleInvoke()) return; } if (m.getDeclaringClass() == VarHandle.class && isVarHandleMethodInvokeName(m.getName())) { // The JVM did not reify this signature-polymorphic instance. // Need a special case here. // See comments on MethodHandleNatives.linkMethod. MethodType type = MethodType.methodType(m.getReturnType(), m.getParameterTypes()); int flags = flagsMods(IS_METHOD, m.getModifiers(), REF_invokeVirtual); init(VarHandle.class, m.getName(), type, flags); if (isVarHandleMethodInvoke()) return; } throw new LinkageError(m.toString()); } assert(isResolved() && this.clazz != null); this.name = m.getName(); if (this.type == null) this.type = new Object[] { m.getReturnType(), m.getParameterTypes() }; if (wantSpecial) { if (isAbstract()) throw new AbstractMethodError(this.toString()); if (getReferenceKind() == REF_invokeVirtual) changeReferenceKind(REF_invokeSpecial, REF_invokeVirtual); else if (getReferenceKind() == REF_invokeInterface) // invokeSpecial on a default method changeReferenceKind(REF_invokeSpecial, REF_invokeInterface); } } public MemberName asSpecial() { switch (getReferenceKind()) { case REF_invokeSpecial: return this; case REF_invokeVirtual: return clone().changeReferenceKind(REF_invokeSpecial, REF_invokeVirtual); case REF_invokeInterface: return clone().changeReferenceKind(REF_invokeSpecial, REF_invokeInterface); case REF_newInvokeSpecial: return clone().changeReferenceKind(REF_invokeSpecial, REF_newInvokeSpecial); } throw new IllegalArgumentException(this.toString()); }
If this MN is not REF_newInvokeSpecial, return a clone with that ref. kind. In that case it must already be REF_invokeSpecial.
/** If this MN is not REF_newInvokeSpecial, return a clone with that ref. kind. * In that case it must already be REF_invokeSpecial. */
public MemberName asConstructor() { switch (getReferenceKind()) { case REF_invokeSpecial: return clone().changeReferenceKind(REF_newInvokeSpecial, REF_invokeSpecial); case REF_newInvokeSpecial: return this; } throw new IllegalArgumentException(this.toString()); }
If this MN is a REF_invokeSpecial, return a clone with the "normal" kind REF_invokeVirtual; also switch either to REF_invokeInterface if clazz.isInterface. The end result is to get a fully virtualized version of the MN. (Note that resolving in the JVM will sometimes devirtualize, changing REF_invokeVirtual of a final to REF_invokeSpecial, and REF_invokeInterface in some corner cases to either of the previous two; this transform undoes that change under the assumption that it occurred.)
/** If this MN is a REF_invokeSpecial, return a clone with the "normal" kind * REF_invokeVirtual; also switch either to REF_invokeInterface if clazz.isInterface. * The end result is to get a fully virtualized version of the MN. * (Note that resolving in the JVM will sometimes devirtualize, changing * REF_invokeVirtual of a final to REF_invokeSpecial, and REF_invokeInterface * in some corner cases to either of the previous two; this transform * undoes that change under the assumption that it occurred.) */
public MemberName asNormalOriginal() { byte normalVirtual = clazz.isInterface() ? REF_invokeInterface : REF_invokeVirtual; byte refKind = getReferenceKind(); byte newRefKind = refKind; MemberName result = this; switch (refKind) { case REF_invokeInterface: case REF_invokeVirtual: case REF_invokeSpecial: newRefKind = normalVirtual; break; } if (newRefKind == refKind) return this; result = clone().changeReferenceKind(newRefKind, refKind); assert(this.referenceKindIsConsistentWith(result.getReferenceKind())); return result; }
Create a name for the given reflected constructor. The resulting name will be in a resolved state.
/** Create a name for the given reflected constructor. The resulting name will be in a resolved state. */
@SuppressWarnings("LeakingThisInConstructor") public MemberName(Constructor<?> ctor) { Objects.requireNonNull(ctor); // fill in vmtarget, vmindex while we have ctor in hand: MethodHandleNatives.init(this, ctor); assert(isResolved() && this.clazz != null); this.name = CONSTRUCTOR_NAME; if (this.type == null) this.type = new Object[] { void.class, ctor.getParameterTypes() }; }
Create a name for the given reflected field. The resulting name will be in a resolved state.
/** Create a name for the given reflected field. The resulting name will be in a resolved state. */
public MemberName(Field fld) { this(fld, false); } @SuppressWarnings("LeakingThisInConstructor") public MemberName(Field fld, boolean makeSetter) { Objects.requireNonNull(fld); // fill in vmtarget, vmindex while we have fld in hand: MethodHandleNatives.init(this, fld); assert(isResolved() && this.clazz != null); this.name = fld.getName(); this.type = fld.getType(); assert((REF_putStatic - REF_getStatic) == (REF_putField - REF_getField)); byte refKind = this.getReferenceKind(); assert(refKind == (isStatic() ? REF_getStatic : REF_getField)); if (makeSetter) { changeReferenceKind((byte)(refKind + (REF_putStatic - REF_getStatic)), refKind); } } public boolean isGetter() { return MethodHandleNatives.refKindIsGetter(getReferenceKind()); } public boolean isSetter() { return MethodHandleNatives.refKindIsSetter(getReferenceKind()); } public MemberName asSetter() { byte refKind = getReferenceKind(); assert(MethodHandleNatives.refKindIsGetter(refKind)); assert((REF_putStatic - REF_getStatic) == (REF_putField - REF_getField)); byte setterRefKind = (byte)(refKind + (REF_putField - REF_getField)); return clone().changeReferenceKind(setterRefKind, refKind); }
Create a name for the given class. The resulting name will be in a resolved state.
/** Create a name for the given class. The resulting name will be in a resolved state. */
public MemberName(Class<?> type) { init(type.getDeclaringClass(), type.getSimpleName(), type, flagsMods(IS_TYPE, type.getModifiers(), REF_NONE)); initResolved(true); }
Create a name for a signature-polymorphic invoker. This is a placeholder for a signature-polymorphic instance (of MH.invokeExact, etc.) that the JVM does not reify. See comments on MethodHandleNatives.linkMethod.
/** * Create a name for a signature-polymorphic invoker. * This is a placeholder for a signature-polymorphic instance * (of MH.invokeExact, etc.) that the JVM does not reify. * See comments on {@link MethodHandleNatives#linkMethod}. */
static MemberName makeMethodHandleInvoke(String name, MethodType type) { return makeMethodHandleInvoke(name, type, MH_INVOKE_MODS | SYNTHETIC); } static MemberName makeMethodHandleInvoke(String name, MethodType type, int mods) { MemberName mem = new MemberName(MethodHandle.class, name, type, REF_invokeVirtual); mem.flags |= mods; // it's not resolved, but add these modifiers anyway assert(mem.isMethodHandleInvoke()) : mem; return mem; } static MemberName makeVarHandleMethodInvoke(String name, MethodType type) { return makeVarHandleMethodInvoke(name, type, MH_INVOKE_MODS | SYNTHETIC); } static MemberName makeVarHandleMethodInvoke(String name, MethodType type, int mods) { MemberName mem = new MemberName(VarHandle.class, name, type, REF_invokeVirtual); mem.flags |= mods; // it's not resolved, but add these modifiers anyway assert(mem.isVarHandleMethodInvoke()) : mem; return mem; } // bare-bones constructor; the JVM will fill it in MemberName() { } // locally useful cloner @Override protected MemberName clone() { try { return (MemberName) super.clone(); } catch (CloneNotSupportedException ex) { throw newInternalError(ex); } }
Get the definition of this member name. This may be in a super-class of the declaring class of this member.
/** Get the definition of this member name. * This may be in a super-class of the declaring class of this member. */
public MemberName getDefinition() { if (!isResolved()) throw new IllegalStateException("must be resolved: "+this); if (isType()) return this; MemberName res = this.clone(); res.clazz = null; res.type = null; res.name = null; res.resolution = res; res.expandFromVM(); assert(res.getName().equals(this.getName())); return res; } @Override @SuppressWarnings("deprecation") public int hashCode() { // Avoid autoboxing getReferenceKind(), since this is used early and will force // early initialization of Byte$ByteCache return Objects.hash(clazz, new Byte(getReferenceKind()), name, getType()); } @Override public boolean equals(Object that) { return (that instanceof MemberName && this.equals((MemberName)that)); }
Decide if two member names have exactly the same symbolic content. Does not take into account any actual class members, so even if two member names resolve to the same actual member, they may be distinct references.
/** Decide if two member names have exactly the same symbolic content. * Does not take into account any actual class members, so even if * two member names resolve to the same actual member, they may * be distinct references. */
public boolean equals(MemberName that) { if (this == that) return true; if (that == null) return false; return this.clazz == that.clazz && this.getReferenceKind() == that.getReferenceKind() && Objects.equals(this.name, that.name) && Objects.equals(this.getType(), that.getType()); } // Construction from symbolic parts, for queries:
Create a field or type name from the given components: Declaring class, name, type, reference kind. The declaring class may be supplied as null if this is to be a bare name and type. The resulting name will in an unresolved state.
/** Create a field or type name from the given components: * Declaring class, name, type, reference kind. * The declaring class may be supplied as null if this is to be a bare name and type. * The resulting name will in an unresolved state. */
public MemberName(Class<?> defClass, String name, Class<?> type, byte refKind) { init(defClass, name, type, flagsMods(IS_FIELD, 0, refKind)); initResolved(false); }
Create a method or constructor name from the given components: Declaring class, name, type, reference kind. It will be a constructor if and only if the name is "<init>". The declaring class may be supplied as null if this is to be a bare name and type. The last argument is optional, a boolean which requests REF_invokeSpecial. The resulting name will in an unresolved state.
/** Create a method or constructor name from the given components: * Declaring class, name, type, reference kind. * It will be a constructor if and only if the name is {@code "<init>"}. * The declaring class may be supplied as null if this is to be a bare name and type. * The last argument is optional, a boolean which requests REF_invokeSpecial. * The resulting name will in an unresolved state. */
public MemberName(Class<?> defClass, String name, MethodType type, byte refKind) { int initFlags = (name != null && name.equals(CONSTRUCTOR_NAME) ? IS_CONSTRUCTOR : IS_METHOD); init(defClass, name, type, flagsMods(initFlags, 0, refKind)); initResolved(false); }
Create a method, constructor, or field name from the given components: Reference kind, declaring class, name, type.
/** Create a method, constructor, or field name from the given components: * Reference kind, declaring class, name, type. */
public MemberName(byte refKind, Class<?> defClass, String name, Object type) { int kindFlags; if (MethodHandleNatives.refKindIsField(refKind)) { kindFlags = IS_FIELD; if (!(type instanceof Class)) throw newIllegalArgumentException("not a field type"); } else if (MethodHandleNatives.refKindIsMethod(refKind)) { kindFlags = IS_METHOD; if (!(type instanceof MethodType)) throw newIllegalArgumentException("not a method type"); } else if (refKind == REF_newInvokeSpecial) { kindFlags = IS_CONSTRUCTOR; if (!(type instanceof MethodType) || !CONSTRUCTOR_NAME.equals(name)) throw newIllegalArgumentException("not a constructor type or name"); } else { throw newIllegalArgumentException("bad reference kind "+refKind); } init(defClass, name, type, flagsMods(kindFlags, 0, refKind)); initResolved(false); }
Query whether this member name is resolved to a non-static, non-final method.
/** Query whether this member name is resolved to a non-static, non-final method. */
public boolean hasReceiverTypeDispatch() { return MethodHandleNatives.refKindDoesDispatch(getReferenceKind()); }
Query whether this member name is resolved. A resolved member name is one for which the JVM has found a method, constructor, field, or type binding corresponding exactly to the name. (Document?)
/** Query whether this member name is resolved. * A resolved member name is one for which the JVM has found * a method, constructor, field, or type binding corresponding exactly to the name. * (Document?) */
public boolean isResolved() { return resolution == null; } void initResolved(boolean isResolved) { assert(this.resolution == null); // not initialized yet! if (!isResolved) this.resolution = this; assert(isResolved() == isResolved); } void checkForTypeAlias(Class<?> refc) { if (isInvocable()) { MethodType type; if (this.type instanceof MethodType) type = (MethodType) this.type; else this.type = type = getMethodType(); if (type.erase() == type) return; if (VerifyAccess.isTypeVisible(type, refc)) return; throw new LinkageError("bad method type alias: "+type+" not visible from "+refc); } else { Class<?> type; if (this.type instanceof Class<?>) type = (Class<?>) this.type; else this.type = type = getFieldType(); if (VerifyAccess.isTypeVisible(type, refc)) return; throw new LinkageError("bad field type alias: "+type+" not visible from "+refc); } }
Produce a string form of this member name. For types, it is simply the type's own string (as reported by toString). For fields, it is "DeclaringClass.name/type". For methods and constructors, it is "DeclaringClass.name(ptype...)rtype". If the declaring class is null, the prefix "DeclaringClass." is omitted. If the member is unresolved, a prefix "*." is prepended.
/** Produce a string form of this member name. * For types, it is simply the type's own string (as reported by {@code toString}). * For fields, it is {@code "DeclaringClass.name/type"}. * For methods and constructors, it is {@code "DeclaringClass.name(ptype...)rtype"}. * If the declaring class is null, the prefix {@code "DeclaringClass."} is omitted. * If the member is unresolved, a prefix {@code "*."} is prepended. */
@SuppressWarnings("LocalVariableHidesMemberVariable") @Override public String toString() { if (isType()) return type.toString(); // class java.lang.String // else it is a field, method, or constructor StringBuilder buf = new StringBuilder(); if (getDeclaringClass() != null) { buf.append(getName(clazz)); buf.append('.'); } String name = this.name; // avoid expanding from VM buf.append(name == null ? "*" : name); Object type = this.type; // avoid expanding from VM if (!isInvocable()) { buf.append('/'); buf.append(type == null ? "*" : getName(type)); } else { buf.append(type == null ? "(*)*" : getName(type)); } byte refKind = getReferenceKind(); if (refKind != REF_NONE) { buf.append('/'); buf.append(MethodHandleNatives.refKindName(refKind)); } //buf.append("#").append(System.identityHashCode(this)); return buf.toString(); } private static String getName(Object obj) { if (obj instanceof Class<?>) return ((Class<?>)obj).getName(); return String.valueOf(obj); } public IllegalAccessException makeAccessException(String message, Object from) { message = message + ": "+ toString(); if (from != null) { if (from == MethodHandles.publicLookup()) { message += ", from public Lookup"; } else { Module m; if (from instanceof MethodHandles.Lookup) { MethodHandles.Lookup lookup = (MethodHandles.Lookup)from; m = lookup.lookupClass().getModule(); } else { m = from.getClass().getModule(); } message += ", from " + from + " (" + m + ")"; } } return new IllegalAccessException(message); } private String message() { if (isResolved()) return "no access"; else if (isConstructor()) return "no such constructor"; else if (isMethod()) return "no such method"; else return "no such field"; } public ReflectiveOperationException makeAccessException() { String message = message() + ": "+ toString(); ReflectiveOperationException ex; if (isResolved() || !(resolution instanceof NoSuchMethodError || resolution instanceof NoSuchFieldError)) ex = new IllegalAccessException(message); else if (isConstructor()) ex = new NoSuchMethodException(message); else if (isMethod()) ex = new NoSuchMethodException(message); else ex = new NoSuchFieldException(message); if (resolution instanceof Throwable) ex.initCause((Throwable) resolution); return ex; }
Actually making a query requires an access check.
/** Actually making a query requires an access check. */
/*non-public*/ static Factory getFactory() { return Factory.INSTANCE; }
A factory type for resolving member names with the help of the VM. TBD: Define access-safe public constructors for this factory.
/** A factory type for resolving member names with the help of the VM. * TBD: Define access-safe public constructors for this factory. */
/*non-public*/ static class Factory { private Factory() { } // singleton pattern static Factory INSTANCE = new Factory(); private static int ALLOWED_FLAGS = ALL_KINDS; /// Queries List<MemberName> getMembers(Class<?> defc, String matchName, Object matchType, int matchFlags, Class<?> lookupClass) { matchFlags &= ALLOWED_FLAGS; String matchSig = null; if (matchType != null) { matchSig = BytecodeDescriptor.unparse(matchType); if (matchSig.startsWith("(")) matchFlags &= ~(ALL_KINDS & ~IS_INVOCABLE); else matchFlags &= ~(ALL_KINDS & ~IS_FIELD); } final int BUF_MAX = 0x2000; int len1 = matchName == null ? 10 : matchType == null ? 4 : 1; MemberName[] buf = newMemberBuffer(len1); int totalCount = 0; ArrayList<MemberName[]> bufs = null; int bufCount = 0; for (;;) { bufCount = MethodHandleNatives.getMembers(defc, matchName, matchSig, matchFlags, lookupClass, totalCount, buf); if (bufCount <= buf.length) { if (bufCount < 0) bufCount = 0; totalCount += bufCount; break; } // JVM returned to us with an intentional overflow! totalCount += buf.length; int excess = bufCount - buf.length; if (bufs == null) bufs = new ArrayList<>(1); bufs.add(buf); int len2 = buf.length; len2 = Math.max(len2, excess); len2 = Math.max(len2, totalCount / 4); buf = newMemberBuffer(Math.min(BUF_MAX, len2)); } ArrayList<MemberName> result = new ArrayList<>(totalCount); if (bufs != null) { for (MemberName[] buf0 : bufs) { Collections.addAll(result, buf0); } } for (int i = 0; i < bufCount; i++) { result.add(buf[i]); } // Signature matching is not the same as type matching, since // one signature might correspond to several types. // So if matchType is a Class or MethodType, refilter the results. if (matchType != null && matchType != matchSig) { for (Iterator<MemberName> it = result.iterator(); it.hasNext();) { MemberName m = it.next(); if (!matchType.equals(m.getType())) it.remove(); } } return result; }
Produce a resolved version of the given member. Super types are searched (for inherited members) if searchSupers is true. Access checking is performed on behalf of the given lookupClass. If lookup fails or access is not permitted, null is returned. Otherwise a fresh copy of the given member is returned, with modifier bits filled in.
/** Produce a resolved version of the given member. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Access checking is performed on behalf of the given {@code lookupClass}. * If lookup fails or access is not permitted, null is returned. * Otherwise a fresh copy of the given member is returned, with modifier bits filled in. */
private MemberName resolve(byte refKind, MemberName ref, Class<?> lookupClass, boolean speculativeResolve) { MemberName m = ref.clone(); // JVM will side-effect the ref assert(refKind == m.getReferenceKind()); try { // There are 4 entities in play here: // * LC: lookupClass // * REFC: symbolic reference class (MN.clazz before resolution); // * DEFC: resolved method holder (MN.clazz after resolution); // * PTYPES: parameter types (MN.type) // // What we care about when resolving a MemberName is consistency between DEFC and PTYPES. // We do type alias (TA) checks on DEFC to ensure that. DEFC is not known until the JVM // finishes the resolution, so do TA checks right after MHN.resolve() is over. // // All parameters passed by a caller are checked against MH type (PTYPES) on every invocation, // so it is safe to call a MH from any context. // // REFC view on PTYPES doesn't matter, since it is used only as a starting point for resolution and doesn't // participate in method selection. m = MethodHandleNatives.resolve(m, lookupClass, speculativeResolve); if (m == null && speculativeResolve) { return null; } m.checkForTypeAlias(m.getDeclaringClass()); m.resolution = null; } catch (ClassNotFoundException | LinkageError ex) { // JVM reports that the "bytecode behavior" would get an error assert(!m.isResolved()); m.resolution = ex; return m; } assert(m.referenceKindIsConsistent()); m.initResolved(true); assert(m.vminfoIsConsistent()); return m; }
Produce a resolved version of the given member. Super types are searched (for inherited members) if searchSupers is true. Access checking is performed on behalf of the given lookupClass. If lookup fails or access is not permitted, a ReflectiveOperationException is thrown. Otherwise a fresh copy of the given member is returned, with modifier bits filled in.
/** Produce a resolved version of the given member. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Access checking is performed on behalf of the given {@code lookupClass}. * If lookup fails or access is not permitted, a {@linkplain ReflectiveOperationException} is thrown. * Otherwise a fresh copy of the given member is returned, with modifier bits filled in. */
public <NoSuchMemberException extends ReflectiveOperationException> MemberName resolveOrFail(byte refKind, MemberName m, Class<?> lookupClass, Class<NoSuchMemberException> nsmClass) throws IllegalAccessException, NoSuchMemberException { MemberName result = resolve(refKind, m, lookupClass, false); if (result.isResolved()) return result; ReflectiveOperationException ex = result.makeAccessException(); if (ex instanceof IllegalAccessException) throw (IllegalAccessException) ex; throw nsmClass.cast(ex); }
Produce a resolved version of the given member. Super types are searched (for inherited members) if searchSupers is true. Access checking is performed on behalf of the given lookupClass. If lookup fails or access is not permitted, return null. Otherwise a fresh copy of the given member is returned, with modifier bits filled in.
/** Produce a resolved version of the given member. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Access checking is performed on behalf of the given {@code lookupClass}. * If lookup fails or access is not permitted, return null. * Otherwise a fresh copy of the given member is returned, with modifier bits filled in. */
public MemberName resolveOrNull(byte refKind, MemberName m, Class<?> lookupClass) { MemberName result = resolve(refKind, m, lookupClass, true); if (result != null && result.isResolved()) return result; return null; }
Return a list of all methods defined by the given class. Super types are searched (for inherited members) if searchSupers is true. Access checking is performed on behalf of the given lookupClass. Inaccessible members are not added to the last.
/** Return a list of all methods defined by the given class. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Access checking is performed on behalf of the given {@code lookupClass}. * Inaccessible members are not added to the last. */
public List<MemberName> getMethods(Class<?> defc, boolean searchSupers, Class<?> lookupClass) { return getMethods(defc, searchSupers, null, null, lookupClass); }
Return a list of matching methods defined by the given class. Super types are searched (for inherited members) if searchSupers is true. Returned methods will match the name (if not null) and the type (if not null). Access checking is performed on behalf of the given lookupClass. Inaccessible members are not added to the last.
/** Return a list of matching methods defined by the given class. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Returned methods will match the name (if not null) and the type (if not null). * Access checking is performed on behalf of the given {@code lookupClass}. * Inaccessible members are not added to the last. */
public List<MemberName> getMethods(Class<?> defc, boolean searchSupers, String name, MethodType type, Class<?> lookupClass) { int matchFlags = IS_METHOD | (searchSupers ? SEARCH_ALL_SUPERS : 0); return getMembers(defc, name, type, matchFlags, lookupClass); }
Return a list of all constructors defined by the given class. Access checking is performed on behalf of the given lookupClass. Inaccessible members are not added to the last.
/** Return a list of all constructors defined by the given class. * Access checking is performed on behalf of the given {@code lookupClass}. * Inaccessible members are not added to the last. */
public List<MemberName> getConstructors(Class<?> defc, Class<?> lookupClass) { return getMembers(defc, null, null, IS_CONSTRUCTOR, lookupClass); }
Return a list of all fields defined by the given class. Super types are searched (for inherited members) if searchSupers is true. Access checking is performed on behalf of the given lookupClass. Inaccessible members are not added to the last.
/** Return a list of all fields defined by the given class. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Access checking is performed on behalf of the given {@code lookupClass}. * Inaccessible members are not added to the last. */
public List<MemberName> getFields(Class<?> defc, boolean searchSupers, Class<?> lookupClass) { return getFields(defc, searchSupers, null, null, lookupClass); }
Return a list of all fields defined by the given class. Super types are searched (for inherited members) if searchSupers is true. Returned fields will match the name (if not null) and the type (if not null). Access checking is performed on behalf of the given lookupClass. Inaccessible members are not added to the last.
/** Return a list of all fields defined by the given class. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Returned fields will match the name (if not null) and the type (if not null). * Access checking is performed on behalf of the given {@code lookupClass}. * Inaccessible members are not added to the last. */
public List<MemberName> getFields(Class<?> defc, boolean searchSupers, String name, Class<?> type, Class<?> lookupClass) { int matchFlags = IS_FIELD | (searchSupers ? SEARCH_ALL_SUPERS : 0); return getMembers(defc, name, type, matchFlags, lookupClass); }
Return a list of all nested types defined by the given class. Super types are searched (for inherited members) if searchSupers is true. Access checking is performed on behalf of the given lookupClass. Inaccessible members are not added to the last.
/** Return a list of all nested types defined by the given class. * Super types are searched (for inherited members) if {@code searchSupers} is true. * Access checking is performed on behalf of the given {@code lookupClass}. * Inaccessible members are not added to the last. */
public List<MemberName> getNestedTypes(Class<?> defc, boolean searchSupers, Class<?> lookupClass) { int matchFlags = IS_TYPE | (searchSupers ? SEARCH_ALL_SUPERS : 0); return getMembers(defc, null, null, matchFlags, lookupClass); } private static MemberName[] newMemberBuffer(int length) { MemberName[] buf = new MemberName[length]; // fill the buffer with dummy structs for the JVM to fill in for (int i = 0; i < length; i++) buf[i] = new MemberName(); return buf; } } }