/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */
package org.apache.commons.collections;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

import org.apache.commons.collections.list.UnmodifiableList;

A map of objects whose mapping entries are sequenced based on the order in which they were added. This data structure has fast O(1) search time, deletion time, and insertion time.

Although this map is sequenced, it cannot implement List because of incompatible interface definitions. The remove methods in List and Map have different return values (see: List.remove(Object) and Map.remove(Object)).

This class is not thread safe. When a thread safe implementation is required, use Collections.synchronizedMap(Map<Object,Object>) as it is documented, or use explicit synchronization controls.

Author:Michael A. Smith, Daniel Rall, Henning P. Schmiedehausen, Stephen Colebourne
See Also:
Deprecated:Replaced by LinkedMap and ListOrderedMap in map subpackage. Due to be removed in v4.0.
Since:Commons Collections 2.0
Version:$Revision: 646777 $ $Date: 2008-04-10 14:33:15 +0200 (Thu, 10 Apr 2008) $
/** * A map of objects whose mapping entries are sequenced based on the order in * which they were added. This data structure has fast <i>O(1)</i> search * time, deletion time, and insertion time. * <p> * Although this map is sequenced, it cannot implement * {@link java.util.List} because of incompatible interface definitions. * The remove methods in List and Map have different return values * (see: {@link java.util.List#remove(Object)} and {@link java.util.Map#remove(Object)}). * <p> * This class is not thread safe. When a thread safe implementation is * required, use {@link java.util.Collections#synchronizedMap(Map)} as it is documented, * or use explicit synchronization controls. * * @deprecated Replaced by LinkedMap and ListOrderedMap in map subpackage. Due to be removed in v4.0. * @see org.apache.commons.collections.map.LinkedMap * @see org.apache.commons.collections.map.ListOrderedMap * @since Commons Collections 2.0 * @version $Revision: 646777 $ $Date: 2008-04-10 14:33:15 +0200 (Thu, 10 Apr 2008) $ * * @author Michael A. Smith * @author Daniel Rall * @author Henning P. Schmiedehausen * @author Stephen Colebourne */
public class SequencedHashMap implements Map, Cloneable, Externalizable {
Entry that doubles as a node in the linked list of sequenced mappings.
/** * {@link java.util.Map.Entry} that doubles as a node in the linked list * of sequenced mappings. */
private static class Entry implements Map.Entry, KeyValue { // Note: This class cannot easily be made clonable. While the actual // implementation of a clone would be simple, defining the semantics is // difficult. If a shallow clone is implemented, then entry.next.prev != // entry, which is unintuitive and probably breaks all sorts of assumptions // in code that uses this implementation. If a deep clone is // implemented, then what happens when the linked list is cyclical (as is // the case with SequencedHashMap)? It's impossible to know in the clone // when to stop cloning, and thus you end up in a recursive loop, // continuously cloning the "next" in the list. private final Object key; private Object value; // package private to allow the SequencedHashMap to access and manipulate // them. Entry next = null; Entry prev = null; public Entry(Object key, Object value) { this.key = key; this.value = value; } // per Map.Entry.getKey() public Object getKey() { return this.key; } // per Map.Entry.getValue() public Object getValue() { return this.value; } // per Map.Entry.setValue() public Object setValue(Object value) { Object oldValue = this.value; this.value = value; return oldValue; } public int hashCode() { // implemented per api docs for Map.Entry.hashCode() return ((getKey() == null ? 0 : getKey().hashCode()) ^ (getValue() == null ? 0 : getValue().hashCode())); } public boolean equals(Object obj) { if (obj == null) return false; if (obj == this) return true; if (!(obj instanceof Map.Entry)) return false; Map.Entry other = (Map.Entry) obj; // implemented per api docs for Map.Entry.equals(Object) return ( (getKey() == null ? other.getKey() == null : getKey().equals(other.getKey())) && (getValue() == null ? other.getValue() == null : getValue().equals(other.getValue()))); } public String toString() { return "[" + getKey() + "=" + getValue() + "]"; } }
Construct an empty sentinel used to hold the head (sentinel.next) and the tail (sentinel.prev) of the list. The sentinel has a null key and value.
/** * Construct an empty sentinel used to hold the head (sentinel.next) and the * tail (sentinel.prev) of the list. The sentinel has a <code>null</code> * key and value. */
private static final Entry createSentinel() { Entry s = new Entry(null, null); s.prev = s; s.next = s; return s; }
Sentinel used to hold the head and tail of the list of entries.
/** * Sentinel used to hold the head and tail of the list of entries. */
private Entry sentinel;
Map of keys to entries
/** * Map of keys to entries */
private HashMap entries;
Holds the number of modifications that have occurred to the map, excluding modifications made through a collection view's iterator (e.g. entrySet().iterator().remove()). This is used to create a fail-fast behavior with the iterators.
/** * Holds the number of modifications that have occurred to the map, * excluding modifications made through a collection view's iterator * (e.g. entrySet().iterator().remove()). This is used to create a * fail-fast behavior with the iterators. */
private transient long modCount = 0;
Construct a new sequenced hash map with default initial size and load factor.
/** * Construct a new sequenced hash map with default initial size and load * factor. */
public SequencedHashMap() { sentinel = createSentinel(); entries = new HashMap(); }
Construct a new sequenced hash map with the specified initial size and default load factor. @param initialSize the initial size for the hash table @see HashMap#HashMap(int)
/** * Construct a new sequenced hash map with the specified initial size and * default load factor. * * @param initialSize the initial size for the hash table * * @see HashMap#HashMap(int) */
public SequencedHashMap(int initialSize) { sentinel = createSentinel(); entries = new HashMap(initialSize); }
Construct a new sequenced hash map with the specified initial size and load factor. @param initialSize the initial size for the hash table @param loadFactor the load factor for the hash table. @see HashMap#HashMap(int,float)
/** * Construct a new sequenced hash map with the specified initial size and * load factor. * * @param initialSize the initial size for the hash table * * @param loadFactor the load factor for the hash table. * * @see HashMap#HashMap(int,float) */
public SequencedHashMap(int initialSize, float loadFactor) { sentinel = createSentinel(); entries = new HashMap(initialSize, loadFactor); }
Construct a new sequenced hash map and add all the elements in the specified map. The order in which the mappings in the specified map are added is defined by putAll(Map).
/** * Construct a new sequenced hash map and add all the elements in the * specified map. The order in which the mappings in the specified map are * added is defined by {@link #putAll(Map)}. */
public SequencedHashMap(Map m) { this(); putAll(m); }
Removes an internal entry from the linked list. This does not remove it from the underlying map.
/** * Removes an internal entry from the linked list. This does not remove * it from the underlying map. */
private void removeEntry(Entry entry) { entry.next.prev = entry.prev; entry.prev.next = entry.next; }
Inserts a new internal entry to the tail of the linked list. This does not add the entry to the underlying map.
/** * Inserts a new internal entry to the tail of the linked list. This does * not add the entry to the underlying map. */
private void insertEntry(Entry entry) { entry.next = sentinel; entry.prev = sentinel.prev; sentinel.prev.next = entry; sentinel.prev = entry; } // per Map.size()
Implements Map.size().
/** * Implements {@link Map#size()}. */
public int size() { // use the underlying Map's size since size is not maintained here. return entries.size(); }
Implements Map.isEmpty().
/** * Implements {@link Map#isEmpty()}. */
public boolean isEmpty() { // for quick check whether the map is entry, we can check the linked list // and see if there's anything in it. return sentinel.next == sentinel; } /** * Implements {@link Map#containsKey(Object)}. */ public boolean containsKey(Object key) { // pass on to underlying map implementation return entries.containsKey(key); } /** * Implements {@link Map#containsValue(Object)}. */ public boolean containsValue(Object value) { // unfortunately, we cannot just pass this call to the underlying map // because we are mapping keys to entries, not keys to values. The // underlying map doesn't have an efficient implementation anyway, so this // isn't a big deal. // do null comparison outside loop so we only need to do it once. This // provides a tighter, more efficient loop at the expense of slight // code duplication. if (value == null) { for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) { if (pos.getValue() == null) return true; } } else { for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) { if (value.equals(pos.getValue())) return true; } } return false; }
Implements Map.get(Object).
/** * Implements {@link Map#get(Object)}. */
public Object get(Object o) { // find entry for the specified key object Entry entry = (Entry) entries.get(o); if (entry == null) return null; return entry.getValue(); }
Return the entry for the "oldest" mapping. That is, return the Map.Entry for the key-value pair that was first put into the map when compared to all the other pairings in the map. This behavior is equivalent to using entrySet().iterator().next(), but this method provides an optimized implementation. @return The first entry in the sequence, or null if the map is empty.
/** * Return the entry for the "oldest" mapping. That is, return the Map.Entry * for the key-value pair that was first put into the map when compared to * all the other pairings in the map. This behavior is equivalent to using * <code>entrySet().iterator().next()</code>, but this method provides an * optimized implementation. * * @return The first entry in the sequence, or <code>null</code> if the * map is empty. */
public Map.Entry getFirst() { // sentinel.next points to the "first" element of the sequence -- the head // of the list, which is exactly the entry we need to return. We must test // for an empty list though because we don't want to return the sentinel! return (isEmpty()) ? null : sentinel.next; }
Return the key for the "oldest" mapping. That is, return the key for the mapping that was first put into the map when compared to all the other objects in the map. This behavior is equivalent to using getFirst().getKey(), but this method provides a slightly optimized implementation. @return The first key in the sequence, or null if the map is empty.
/** * Return the key for the "oldest" mapping. That is, return the key for the * mapping that was first put into the map when compared to all the other * objects in the map. This behavior is equivalent to using * <code>getFirst().getKey()</code>, but this method provides a slightly * optimized implementation. * * @return The first key in the sequence, or <code>null</code> if the * map is empty. */
public Object getFirstKey() { // sentinel.next points to the "first" element of the sequence -- the head // of the list -- and the requisite key is returned from it. An empty list // does not need to be tested. In cases where the list is empty, // sentinel.next will point to the sentinel itself which has a null key, // which is exactly what we would want to return if the list is empty (a // nice convenient way to avoid test for an empty list) return sentinel.next.getKey(); }
Return the value for the "oldest" mapping. That is, return the value for the mapping that was first put into the map when compared to all the other objects in the map. This behavior is equivalent to using getFirst().getValue(), but this method provides a slightly optimized implementation. @return The first value in the sequence, or null if the map is empty.
/** * Return the value for the "oldest" mapping. That is, return the value for * the mapping that was first put into the map when compared to all the * other objects in the map. This behavior is equivalent to using * <code>getFirst().getValue()</code>, but this method provides a slightly * optimized implementation. * * @return The first value in the sequence, or <code>null</code> if the * map is empty. */
public Object getFirstValue() { // sentinel.next points to the "first" element of the sequence -- the head // of the list -- and the requisite value is returned from it. An empty // list does not need to be tested. In cases where the list is empty, // sentinel.next will point to the sentinel itself which has a null value, // which is exactly what we would want to return if the list is empty (a // nice convenient way to avoid test for an empty list) return sentinel.next.getValue(); }
Return the entry for the "newest" mapping. That is, return the Map.Entry for the key-value pair that was first put into the map when compared to all the other pairings in the map. The behavior is equivalent to:
   Object obj = null;
   Iterator iter = entrySet().iterator();
   while(iter.hasNext()) {
     obj = iter.next();
   }
   return (Map.Entry)obj;
 
However, the implementation of this method ensures an O(1) lookup of the last key rather than O(n). @return The last entry in the sequence, or null if the map is empty.
/** * Return the entry for the "newest" mapping. That is, return the Map.Entry * for the key-value pair that was first put into the map when compared to * all the other pairings in the map. The behavior is equivalent to: * * <pre> * Object obj = null; * Iterator iter = entrySet().iterator(); * while(iter.hasNext()) { * obj = iter.next(); * } * return (Map.Entry)obj; * </pre> * * However, the implementation of this method ensures an O(1) lookup of the * last key rather than O(n). * * @return The last entry in the sequence, or <code>null</code> if the map * is empty. */
public Map.Entry getLast() { // sentinel.prev points to the "last" element of the sequence -- the tail // of the list, which is exactly the entry we need to return. We must test // for an empty list though because we don't want to return the sentinel! return (isEmpty()) ? null : sentinel.prev; }
Return the key for the "newest" mapping. That is, return the key for the mapping that was last put into the map when compared to all the other objects in the map. This behavior is equivalent to using getLast().getKey(), but this method provides a slightly optimized implementation. @return The last key in the sequence, or null if the map is empty.
/** * Return the key for the "newest" mapping. That is, return the key for the * mapping that was last put into the map when compared to all the other * objects in the map. This behavior is equivalent to using * <code>getLast().getKey()</code>, but this method provides a slightly * optimized implementation. * * @return The last key in the sequence, or <code>null</code> if the map is * empty. */
public Object getLastKey() { // sentinel.prev points to the "last" element of the sequence -- the tail // of the list -- and the requisite key is returned from it. An empty list // does not need to be tested. In cases where the list is empty, // sentinel.prev will point to the sentinel itself which has a null key, // which is exactly what we would want to return if the list is empty (a // nice convenient way to avoid test for an empty list) return sentinel.prev.getKey(); }
Return the value for the "newest" mapping. That is, return the value for the mapping that was last put into the map when compared to all the other objects in the map. This behavior is equivalent to using getLast().getValue(), but this method provides a slightly optimized implementation. @return The last value in the sequence, or null if the map is empty.
/** * Return the value for the "newest" mapping. That is, return the value for * the mapping that was last put into the map when compared to all the other * objects in the map. This behavior is equivalent to using * <code>getLast().getValue()</code>, but this method provides a slightly * optimized implementation. * * @return The last value in the sequence, or <code>null</code> if the map * is empty. */
public Object getLastValue() { // sentinel.prev points to the "last" element of the sequence -- the tail // of the list -- and the requisite value is returned from it. An empty // list does not need to be tested. In cases where the list is empty, // sentinel.prev will point to the sentinel itself which has a null value, // which is exactly what we would want to return if the list is empty (a // nice convenient way to avoid test for an empty list) return sentinel.prev.getValue(); } /** * Implements {@link Map#put(Object, Object)}. */ public Object put(Object key, Object value) { modCount++; Object oldValue = null; // lookup the entry for the specified key Entry e = (Entry) entries.get(key); // check to see if it already exists if (e != null) { // remove from list so the entry gets "moved" to the end of list removeEntry(e); // update value in map oldValue = e.setValue(value); // Note: We do not update the key here because its unnecessary. We only // do comparisons using equals(Object) and we know the specified key and // that in the map are equal in that sense. This may cause a problem if // someone does not implement their hashCode() and/or equals(Object) // method properly and then use it as a key in this map. } else { // add new entry e = new Entry(key, value); entries.put(key, e); } // assert(entry in map, but not list) // add to list insertEntry(e); return oldValue; }
Implements Map.remove(Object).
/** * Implements {@link Map#remove(Object)}. */
public Object remove(Object key) { Entry e = removeImpl(key); return (e == null) ? null : e.getValue(); }
Fully remove an entry from the map, returning the old entry or null if there was no such entry with the specified key.
/** * Fully remove an entry from the map, returning the old entry or null if * there was no such entry with the specified key. */
private Entry removeImpl(Object key) { Entry e = (Entry) entries.remove(key); if (e == null) return null; modCount++; removeEntry(e); return e; }
Adds all the mappings in the specified map to this map, replacing any mappings that already exist (as per Map.putAll(Map)). The order in which the entries are added is determined by the iterator returned from Map.entrySet() for the specified map. @param t the mappings that should be added to this map. @throws NullPointerException if t is null
/** * Adds all the mappings in the specified map to this map, replacing any * mappings that already exist (as per {@link Map#putAll(Map)}). The order * in which the entries are added is determined by the iterator returned * from {@link Map#entrySet()} for the specified map. * * @param t the mappings that should be added to this map. * * @throws NullPointerException if <code>t</code> is <code>null</code> */
public void putAll(Map t) { Iterator iter = t.entrySet().iterator(); while (iter.hasNext()) { Map.Entry entry = (Map.Entry) iter.next(); put(entry.getKey(), entry.getValue()); } }
Implements Map.clear().
/** * Implements {@link Map#clear()}. */
public void clear() { modCount++; // remove all from the underlying map entries.clear(); // and the list sentinel.next = sentinel; sentinel.prev = sentinel; }
Implements Map.equals(Object).
/** * Implements {@link Map#equals(Object)}. */
public boolean equals(Object obj) { if (obj == null) return false; if (obj == this) return true; if (!(obj instanceof Map)) return false; return entrySet().equals(((Map) obj).entrySet()); }
Implements Map.hashCode().
/** * Implements {@link Map#hashCode()}. */
public int hashCode() { return entrySet().hashCode(); }
Provides a string representation of the entries within the map. The format of the returned string may change with different releases, so this method is suitable for debugging purposes only. If a specific format is required, use entrySet().iterator() and iterate over the entries in the map formatting them as appropriate.
/** * Provides a string representation of the entries within the map. The * format of the returned string may change with different releases, so this * method is suitable for debugging purposes only. If a specific format is * required, use {@link #entrySet()}.{@link Set#iterator() iterator()} and * iterate over the entries in the map formatting them as appropriate. */
public String toString() { StringBuffer buf = new StringBuffer(); buf.append('['); for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) { buf.append(pos.getKey()); buf.append('='); buf.append(pos.getValue()); if (pos.next != sentinel) { buf.append(','); } } buf.append(']'); return buf.toString(); }
Implements Map.keySet().
/** * Implements {@link Map#keySet()}. */
public Set keySet() { return new AbstractSet() { // required impls public Iterator iterator() { return new OrderedIterator(KEY); } public boolean remove(Object o) { Entry e = SequencedHashMap.this.removeImpl(o); return (e != null); } // more efficient impls than abstract set public void clear() { SequencedHashMap.this.clear(); } public int size() { return SequencedHashMap.this.size(); } public boolean isEmpty() { return SequencedHashMap.this.isEmpty(); } public boolean contains(Object o) { return SequencedHashMap.this.containsKey(o); } }; }
Implements Map.values().
/** * Implements {@link Map#values()}. */
public Collection values() { return new AbstractCollection() { // required impl public Iterator iterator() { return new OrderedIterator(VALUE); } public boolean remove(Object value) { // do null comparison outside loop so we only need to do it once. This // provides a tighter, more efficient loop at the expense of slight // code duplication. if (value == null) { for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) { if (pos.getValue() == null) { SequencedHashMap.this.removeImpl(pos.getKey()); return true; } } } else { for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) { if (value.equals(pos.getValue())) { SequencedHashMap.this.removeImpl(pos.getKey()); return true; } } } return false; } // more efficient impls than abstract collection public void clear() { SequencedHashMap.this.clear(); } public int size() { return SequencedHashMap.this.size(); } public boolean isEmpty() { return SequencedHashMap.this.isEmpty(); } public boolean contains(Object o) { return SequencedHashMap.this.containsValue(o); } }; }
Implements Map.entrySet().
/** * Implements {@link Map#entrySet()}. */
public Set entrySet() { return new AbstractSet() { // helper private Entry findEntry(Object o) { if (o == null) return null; if (!(o instanceof Map.Entry)) return null; Map.Entry e = (Map.Entry) o; Entry entry = (Entry) entries.get(e.getKey()); if (entry != null && entry.equals(e)) return entry; else return null; } // required impl public Iterator iterator() { return new OrderedIterator(ENTRY); } public boolean remove(Object o) { Entry e = findEntry(o); if (e == null) return false; return SequencedHashMap.this.removeImpl(e.getKey()) != null; } // more efficient impls than abstract collection public void clear() { SequencedHashMap.this.clear(); } public int size() { return SequencedHashMap.this.size(); } public boolean isEmpty() { return SequencedHashMap.this.isEmpty(); } public boolean contains(Object o) { return findEntry(o) != null; } }; } // constants to define what the iterator should return on "next" private static final int KEY = 0; private static final int VALUE = 1; private static final int ENTRY = 2; private static final int REMOVED_MASK = 0x80000000; private class OrderedIterator implements Iterator {
Holds the type that should be returned from the iterator. The value should be either SequencedHashMap.KEY, SequencedHashMap.VALUE, or SequencedHashMap.ENTRY. To save a tiny bit of memory, this field is also used as a marker for when remove has been called on the current object to prevent a second remove on the same element. Essentially, if this value is negative (i.e. the bit specified by SequencedHashMap.REMOVED_MASK is set), the current position has been removed. If positive, remove can still be called.
/** * Holds the type that should be returned from the iterator. The value * should be either {@link #KEY}, {@link #VALUE}, or {@link #ENTRY}. To * save a tiny bit of memory, this field is also used as a marker for when * remove has been called on the current object to prevent a second remove * on the same element. Essentially, if this value is negative (i.e. the * bit specified by {@link #REMOVED_MASK} is set), the current position * has been removed. If positive, remove can still be called. */
private int returnType;
Holds the "current" position in the iterator. When pos.next is the sentinel, we've reached the end of the list.
/** * Holds the "current" position in the iterator. When pos.next is the * sentinel, we've reached the end of the list. */
private Entry pos = sentinel;
Holds the expected modification count. If the actual modification count of the map differs from this value, then a concurrent modification has occurred.
/** * Holds the expected modification count. If the actual modification * count of the map differs from this value, then a concurrent * modification has occurred. */
private transient long expectedModCount = modCount;
Construct an iterator over the sequenced elements in the order in which they were added. The next() method returns the type specified by returnType which must be either SequencedHashMap.KEY, SequencedHashMap.VALUE, or SequencedHashMap.ENTRY.
/** * Construct an iterator over the sequenced elements in the order in which * they were added. The {@link #next()} method returns the type specified * by <code>returnType</code> which must be either {@link #KEY}, {@link * #VALUE}, or {@link #ENTRY}. */
public OrderedIterator(int returnType) { //// Since this is a private inner class, nothing else should have //// access to the constructor. Since we know the rest of the outer //// class uses the iterator correctly, we can leave of the following //// check: //if(returnType >= 0 && returnType <= 2) { // throw new IllegalArgumentException("Invalid iterator type"); //} // Set the "removed" bit so that the iterator starts in a state where // "next" must be called before "remove" will succeed. this.returnType = returnType | REMOVED_MASK; }
Returns whether there is any additional elements in the iterator to be returned. @return true if there are more elements left to be returned from the iterator; false otherwise.
/** * Returns whether there is any additional elements in the iterator to be * returned. * * @return <code>true</code> if there are more elements left to be * returned from the iterator; <code>false</code> otherwise. */
public boolean hasNext() { return pos.next != sentinel; }
Returns the next element from the iterator. @return the next element from the iterator. @throws NoSuchElementException if there are no more elements in the iterator. @throws ConcurrentModificationException if a modification occurs in the underlying map.
/** * Returns the next element from the iterator. * * @return the next element from the iterator. * * @throws NoSuchElementException if there are no more elements in the * iterator. * * @throws ConcurrentModificationException if a modification occurs in * the underlying map. */
public Object next() { if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } if (pos.next == sentinel) { throw new NoSuchElementException(); } // clear the "removed" flag returnType = returnType & ~REMOVED_MASK; pos = pos.next; switch (returnType) { case KEY : return pos.getKey(); case VALUE : return pos.getValue(); case ENTRY : return pos; default : // should never happen throw new Error("bad iterator type: " + returnType); } }
Removes the last element returned from the next() method from the sequenced map. @throws IllegalStateException if there isn't a "last element" to be removed. That is, if next() has never been called, or if remove() was already called on the element. @throws ConcurrentModificationException if a modification occurs in the underlying map.
/** * Removes the last element returned from the {@link #next()} method from * the sequenced map. * * @throws IllegalStateException if there isn't a "last element" to be * removed. That is, if {@link #next()} has never been called, or if * {@link #remove()} was already called on the element. * * @throws ConcurrentModificationException if a modification occurs in * the underlying map. */
public void remove() { if ((returnType & REMOVED_MASK) != 0) { throw new IllegalStateException("remove() must follow next()"); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } SequencedHashMap.this.removeImpl(pos.getKey()); // update the expected mod count for the remove operation expectedModCount++; // set the removed flag returnType = returnType | REMOVED_MASK; } } // APIs maintained from previous version of SequencedHashMap for backwards // compatibility
Creates a shallow copy of this object, preserving the internal structure by copying only references. The keys and values themselves are not clone()'d. The cloned object maintains the same sequence.
Throws:
Returns:A clone of this instance.
/** * Creates a shallow copy of this object, preserving the internal structure * by copying only references. The keys and values themselves are not * <code>clone()</code>'d. The cloned object maintains the same sequence. * * @return A clone of this instance. * * @throws CloneNotSupportedException if clone is not supported by a * subclass. */
public Object clone() throws CloneNotSupportedException { // yes, calling super.clone() silly since we're just blowing away all // the stuff that super might be doing anyway, but for motivations on // this, see: // http://www.javaworld.com/javaworld/jw-01-1999/jw-01-object.html SequencedHashMap map = (SequencedHashMap) super.clone(); // create new, empty sentinel map.sentinel = createSentinel(); // create a new, empty entry map // note: this does not preserve the initial capacity and load factor. map.entries = new HashMap(); // add all the mappings map.putAll(this); // Note: We cannot just clone the hashmap and sentinel because we must // duplicate our internal structures. Cloning those two will not clone all // the other entries they reference, and so the cloned hash map will not be // able to maintain internal consistency because there are two objects with // the same entries. See discussion in the Entry implementation on why we // cannot implement a clone of the Entry (and thus why we need to recreate // everything). return map; }
Returns the Map.Entry at the specified index @throws ArrayIndexOutOfBoundsException if the specified index is < 0 or > the size of the map.
/** * Returns the Map.Entry at the specified index * * @throws ArrayIndexOutOfBoundsException if the specified index is * <code>&lt; 0</code> or <code>&gt;</code> the size of the map. */
private Map.Entry getEntry(int index) { Entry pos = sentinel; if (index < 0) { throw new ArrayIndexOutOfBoundsException(index + " < 0"); } // loop to one before the position int i = -1; while (i < (index - 1) && pos.next != sentinel) { i++; pos = pos.next; } // pos.next is the requested position // if sentinel is next, past end of list if (pos.next == sentinel) { throw new ArrayIndexOutOfBoundsException(index + " >= " + (i + 1)); } return pos.next; }
Gets the key at the specified index.
Params:
  • index – the index to retrieve
Throws:
Returns:the key at the specified index, or null
/** * Gets the key at the specified index. * * @param index the index to retrieve * @return the key at the specified index, or null * @throws ArrayIndexOutOfBoundsException if the <code>index</code> is * <code>&lt; 0</code> or <code>&gt;</code> the size of the map. */
public Object get(int index) { return getEntry(index).getKey(); }
Gets the value at the specified index.
Params:
  • index – the index to retrieve
Throws:
Returns:the value at the specified index, or null
/** * Gets the value at the specified index. * * @param index the index to retrieve * @return the value at the specified index, or null * @throws ArrayIndexOutOfBoundsException if the <code>index</code> is * <code>&lt; 0</code> or <code>&gt;</code> the size of the map. */
public Object getValue(int index) { return getEntry(index).getValue(); }
Gets the index of the specified key.
Params:
  • key – the key to find the index of
Returns:the index, or -1 if not found
/** * Gets the index of the specified key. * * @param key the key to find the index of * @return the index, or -1 if not found */
public int indexOf(Object key) { Entry e = (Entry) entries.get(key); if (e == null) { return -1; } int pos = 0; while (e.prev != sentinel) { pos++; e = e.prev; } return pos; }
Gets an iterator over the keys.
Returns:an iterator over the keys
/** * Gets an iterator over the keys. * * @return an iterator over the keys */
public Iterator iterator() { return keySet().iterator(); }
Gets the last index of the specified key.
Params:
  • key – the key to find the index of
Returns:the index, or -1 if not found
/** * Gets the last index of the specified key. * * @param key the key to find the index of * @return the index, or -1 if not found */
public int lastIndexOf(Object key) { // keys in a map are guaranteed to be unique return indexOf(key); }
Returns a List view of the keys rather than a set view. The returned list is unmodifiable. This is required because changes to the values of the list (using ListIterator.set(Object)) will effectively remove the value from the list and reinsert that value at the end of the list, which is an unexpected side effect of changing the value of a list. This occurs because changing the key, changes when the mapping is added to the map and thus where it appears in the list.

An alternative to this method is to use keySet()

See Also:
Returns:The ordered list of keys.
/** * Returns a List view of the keys rather than a set view. The returned * list is unmodifiable. This is required because changes to the values of * the list (using {@link java.util.ListIterator#set(Object)}) will * effectively remove the value from the list and reinsert that value at * the end of the list, which is an unexpected side effect of changing the * value of a list. This occurs because changing the key, changes when the * mapping is added to the map and thus where it appears in the list. * * <p>An alternative to this method is to use {@link #keySet()} * * @see #keySet() * @return The ordered list of keys. */
public List sequence() { List l = new ArrayList(size()); Iterator iter = keySet().iterator(); while (iter.hasNext()) { l.add(iter.next()); } return UnmodifiableList.decorate(l); }
Removes the element at the specified index.
Params:
  • index – The index of the object to remove.
Throws:
Returns: The previous value corresponding the key, or null if none existed.
/** * Removes the element at the specified index. * * @param index The index of the object to remove. * @return The previous value corresponding the <code>key</code>, or * <code>null</code> if none existed. * * @throws ArrayIndexOutOfBoundsException if the <code>index</code> is * <code>&lt; 0</code> or <code>&gt;</code> the size of the map. */
public Object remove(int index) { return remove(get(index)); } // per Externalizable.readExternal(ObjectInput)
Deserializes this map from the given stream.
Params:
  • in – the stream to deserialize from
Throws:
/** * Deserializes this map from the given stream. * * @param in the stream to deserialize from * @throws IOException if the stream raises it * @throws ClassNotFoundException if the stream raises it */
public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException { int size = in.readInt(); for (int i = 0; i < size; i++) { Object key = in.readObject(); Object value = in.readObject(); put(key, value); } }
Serializes this map to the given stream.
Params:
  • out – the stream to serialize to
Throws:
/** * Serializes this map to the given stream. * * @param out the stream to serialize to * @throws IOException if the stream raises it */
public void writeExternal(ObjectOutput out) throws IOException { out.writeInt(size()); for (Entry pos = sentinel.next; pos != sentinel; pos = pos.next) { out.writeObject(pos.getKey()); out.writeObject(pos.getValue()); } } // add a serial version uid, so that if we change things in the future // without changing the format, we can still deserialize properly. private static final long serialVersionUID = 3380552487888102930L; }